满分5 > 高中数学试题 >

在直角坐标系xOy中,椭圆C1:=1(a>b>0)的左、右焦点分别为F1,F2....

在直角坐标系xOy中,椭圆C1manfen5.com 满分网=1(a>b>0)的左、右焦点分别为F1,F2.F2也是抛物线C2:y2=4x的焦点,点M为C1与C2在第一象限的交点,且|MF2|=manfen5.com 满分网
(Ⅰ)求C1的方程;
(Ⅱ)平面上的点N满足manfen5.com 满分网,直线l∥MN,且与C1交于A,B两点,若manfen5.com 满分网,求直线l的方程.
(Ⅰ)先利用F2是抛物线C2:y2=4x的焦点求出F2的坐标,再利用|MF2|=以及抛物线的定义求出点M的坐标,可以得到关于椭圆方程中参数的两个等式联立即可求C1的方程; (Ⅱ)先利用,以及直线l∥MN得出直线l与OM的斜率相同,设出直线l的方程,把直线方程与椭圆方程联立得到关于A,B两点坐标的等式,整理代入,即可求出直线l的方程. 【解析】 (Ⅰ)由C2:y2=4x知F2(1,0). 设M(x1,y1),M在C2上,因为, 所以,得,.M在C1上,且椭圆C1的半焦距c=1, 于是 消去b2并整理得9a4-37a2+4=0,解得a=2(不合题意,舍去). 故椭圆C1的方程为. (Ⅱ)由知四边形MF1NF2是平行四边形,其中心为坐标原点O, 因为l∥MN,所以l与OM的斜率相同, 故l的斜率.设l的方程为. 由 消去y并化简得9x2-16mx+8m2-4=0. 设A(x1,y1),B(x2,y2),,. 因为,所以x1x2+y1y2=0. x1x2+y1y2 =x1x2+6(x1-m)(x2-m) =7x1x2-6m(x1+x2)+6m2 ==. 所以.此时△=(16m)2-4×9(8m2-4)>0, 故所求直线l的方程为,或.
复制答案
考点分析:
相关试题推荐
设函数f(x)=-x3+3x+2分别在x1、x2处取得极小值、极大值.xoy平面上点A、B的坐标分别为(x1,f(x1))、(x2,f(x2)),该平面上动点P满足manfen5.com 满分网,点Q是点P关于直线y=2(x-4)的对称点.求
(I)求点A、B的坐标;
(II)求动点Q的轨迹方程.
查看答案
设t≠0,点P(t,0)是函数f(x)=x3+ax与g(x)=bx2+c的图象的一个公共点,两函数的图象在点P处有相同的切线.
(Ⅰ)用t表示a,b,c;
(Ⅱ)若函数y=f(x)-g(x)在(-1,3)上单调递减,求t的取值范围.
查看答案
若函数f(x)=ax3-bx+4,当x=2时,函数f(x)有极值为manfen5.com 满分网
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若f(x)=k有3个解,求实数k的取值范围.
查看答案
设函数f(x)=tx2+2t2x+t-1(x∈R,t>0).
(I)求f (x)的最小值h(t);
(II)若h(t)<-2t+m对t∈(0,2)恒成立,求实数m的取值范围.
查看答案
过点(1,1)作曲线y=x3的切线l,求直线l方程.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.