满分5 > 高中数学试题 >

若三角形的内切圆半径为r,三边的长分别为a,b,c,则三角形的面积S=r(a+b...

若三角形的内切圆半径为r,三边的长分别为a,b,c,则三角形的面积S=manfen5.com 满分网r(a+b+c),根据类比思想,若四面体的内切球半径为R,四个面的面积分别为S1、S2、S3、S4,则此四面体的体积V=   
根据平面与空间之间的类比推理,由点类比点或直线,由直线 类比 直线或平面,由内切圆类比内切球,由平面图形面积类比立体图形的体积,结合求三角形的面积的方法类比求四面体的体积即可. 【解析】 设四面体的内切球的球心为O, 则球心O到四个面的距离都是R, 所以四面体的体积等于以O为顶点, 分别以四个面为底面的4个三棱锥体积的和. 故答案为:R(S1+S2+S3+S4).
复制答案
考点分析:
相关试题推荐
函数f(x)=x3-3x+1在闭区间[-3,0]上的最大值、最小值分别是    查看答案
1×9+2=11,12×9+3=111,123×9+4=1111,1234×9+5=11111,猜测123456×9+7=    查看答案
若复数z=m+1+(m-1)i为纯虚数,则实数m=    查看答案
给出下面四个类比结论
①实数a,b,若ab=0,则a=0或b=0;类比向量manfen5.com 满分网manfen5.com 满分网,若manfen5.com 满分网manfen5.com 满分网=0,则manfen5.com 满分网=manfen5.com 满分网manfen5.com 满分网=manfen5.com 满分网
②实数a,b,有(a+b)2=a2+2ab+b2;类比向量manfen5.com 满分网manfen5.com 满分网,有(manfen5.com 满分网+manfen5.com 满分网2=manfen5.com 满分网2+2manfen5.com 满分网manfen5.com 满分网+manfen5.com 满分网2
③向量manfen5.com 满分网,有|manfen5.com 满分网|2=manfen5.com 满分网2;类比复数z,有|z|2=z2
④实数a,b有a2+b2=0,则a=b=0;类比复数z1,z2有z12+z22=0,z1=z2=0.
其中类比结论正确的命题个数为( )
A.0
B.1
C.2
D.3
查看答案
已知f(x)=x2+2x•f′(1),则 f′(0)等于( )
A.-2
B.2
C.1
D.-4
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.