(1)先根据f(x)的图象经过点(0,1)求出c,然后根据导数的几何意义求出函数f(x)在x=1处的导数,从而求出切线的斜率,建立一等量关系,再根据切点在曲线上建立一等式关系,解方程组即可;
(2)首先对f(x)=-2+1求导,可得f'(x)=10x3-9x,令f′(x)>0解之即可求出函数的单调递增区间.
【解析】
(1)f(x)=ax4+bx2+c的图象经过点(0,1),则c=1,
f'(x)=4ax3+2bx,k=f'(1)=4a+2b=1(4分)
切点为(1,-1),则f(x)=ax4+bx2+c的图象经过点(1,-1),
得a+b+c=-1,得a=,b=-
f(x)=-2+1(8分)
(2)f'(x)=10x3-9x>0,-<x<0,或x>
单调递增区间为(,-,0),(,+∞)(12分)