已知函数f(x)=ax
4lnx+bx
4-c(x>0)在x=1处取得极值-3-c,其中a,b,c为常数.
(1)试确定a,b的值;
(2)讨论函数f(x)的单调区间;
(3)若对任意x>0,不等式f(x)≥-2c
2恒成立,求c的取值范围.
考点分析:
相关试题推荐
已知直线y=-x+1与椭圆
=1(a>b>0)相交于A、B两点.
(1)若椭圆的离心率为
,焦距为2,求椭圆的标准方程;
(2)若OA⊥OB(其中O为坐标原点),当椭圆的离率e∈
时,求椭圆的长轴长的最大值.
查看答案
一个口袋内装有形状、大小都相同的2个白球和3个黑球.
(1)从中一次随机摸出两个球,求两球恰好颜色不同的概率;
(2)从中随机摸出一个球,不放回后再随机摸出一个球,求两球同时是黑球的概率;
(3)从中随机摸出一个球,放回后再随机摸出一个球,求两球恰好颜色不同的概率.
查看答案
.
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程
;
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)
查看答案
统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:
x+8(0<x≤120).已知甲、乙两地相距100千米.
(I)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
查看答案
已知复数z满足
,z
2的虚部为2.
(I)求z;
(II)设z,z
2,z-z
2在复平面对应的点分别为A,B,C,求△ABC的面积.
查看答案