满分5 > 高中数学试题 >

已知函数f(x)=2sinxcosx+2bcos2x,且f(0)=8,f()=1...

已知函数f(x)=2sinxcosx+2bcos2x,且f(0)=8,f(manfen5.com 满分网)=12.
(1)求实数a,b的值;
(2)求函数f(x)的最大值及取得最大值时x的值.
(1)直接利用条件 f(0)=8,f()=12,求出a 和b的值. (2)由(1)知:f(x)=8sinxcosx+8cos2x,再利用二倍角公式,两角和的正弦公式,可得f(x)=  8sin(2x+)+4,由此可得f(x)的最大值等于12,此时 2x+=2kπ+,(k∈Z),从而求得x的值. 【解析】 (1)∵f(0)=8,f()=12,∴2b=8,2a•+2b×=12, 故 a=4,b=4  …(6分)  (2)由(1)知:f(x)=8sinxcosx+8cos2x   =4sin2x+4(1+cos2x) …(8分) =8(sin2x+cos2x)+4 …(9分) =8sin(2x+)+4 …(10分) ∴f(x)的最大值等于12,此时 2x+=2kπ+,(k∈Z)…(11分) 即 x=kπ+ (k∈Z)时,f(x)有最大值等于12. …(12分)
复制答案
考点分析:
相关试题推荐
定义一个对应法则f:P(m,n)→P(manfen5.com 满分网manfen5.com 满分网),(m≥0,n≥0).现有点A(2,6)与点B(6,2),点M是线段AB上一动点,按定义的对应法则f:M→M′.当点M在线段AB上从点A开始运动到点B结束时,点M的对应点M′所经过的路线长度为    查看答案
考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点种任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于    查看答案
已知函数manfen5.com 满分网若f(2-a2)>f(a),则实数a的取值范围是    查看答案
若随机变量X~N(μ,σ2),则P(X≤μ)=    查看答案
若(ax-1)5的展开式中x3的系数是-80,则实数a的值是     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.