满分5 > 高中数学试题 >

已知椭圆的左焦点为F,左右顶点分别为A,C上顶点为B,过F,B,C三点作⊙P,其...

已知椭圆manfen5.com 满分网的左焦点为F,左右顶点分别为A,C上顶点为B,过F,B,C三点作⊙P,其中圆心P的坐标为(m,n).
(1)若FC是⊙P的直径,求椭圆的离心率;
(2)若⊙P的圆心在直线x+y=0上,求椭圆的方程.
(1)由椭圆的方程知a=1,点B(0,b),C(1,0),设F的坐标为(-c,0),由FC是⊙P的直径,知FB⊥BC.由,知b2=c=1-c2,c2+c-1=0.由此能求出椭圆的离心率. (2)由P过点F,B,C三点,知圆心P既在FC的垂直平分线上,也在BC的垂直平分线上,FC的垂直平分线方程为.由BC的中点为,kBC=-b,知BC的垂直平分线方程为,所以.由P(m,n)在直线x+y=0上,知b=c.由此能求出椭圆的方程. 【解析】 (1)由椭圆的方程知a=1,∴点B(0,b),C(1,0), 设F的坐标为(-c,0),(1分) ∵FC是⊙P的直径, ∴FB⊥BC ∵ ∴(2分) ∴b2=c=1-c2,c2+c-1=0(3分) 解得(5分) ∴椭圆的离心率(6分) (2)【解析】 ∵⊙P过点F,B,C三点, ∴圆心P既在FC的垂直平分线上,也在BC的垂直平分线上, FC的垂直平分线方程为①(7分) ∵BC的中点为,kBC=-b ∴BC的垂直平分线方程为②(9分) 由①②得, 即(11分) ∵P(m,n)在直线x+y=0上, ∴⇒(1+b)(b-c)=0 ∵1+b>0 ∴b=c(13分) 由b2=1-c2得 ∴椭圆的方程为x2+2y2=1(14分)
复制答案
考点分析:
相关试题推荐
甲、乙两人玩一种游戏;在装有质地、大小完全相同,编号分别为1,2,3,4,5,6六个球的口袋中,甲先模出一个球,记下编号,放回后乙再模一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.
(1)求甲赢且编号和为8的事件发生的概率;
(2)这种游戏规则公平吗?试说明理由.
查看答案
如图,已知ABCD-A1B1C1D1是底面为正方形的长方体,∠AD1A1=60°,AD1=4,点P是AD1上的动点.
(1)试求四棱锥P-A1B1C1D1体积的最大值;
(2)试判断不论点P在AD1上的任何位置,是否都有平面B1PA1垂直于平面AA1D1?并证明你的结论.

manfen5.com 满分网 查看答案
已知:函数manfen5.com 满分网
(1)求函数f(x)的最小正周期和值域;
(2)若函数f(x)的图象过点manfen5.com 满分网manfen5.com 满分网.求manfen5.com 满分网的值.
查看答案
路灯距地面为6m,一个身高为1.6m的人以1.2m/s的速度从路灯的正底下,沿某直线离开路灯,那么人影长度S(m)与人从路灯的正底下离开路灯的时间t(s)的关系为    ,人影长度的变化速度v为    (m/s). 查看答案
manfen5.com 满分网如图,是一程序框图,则输出结果为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.