满分5 > 高中数学试题 >

设数列{an}的前n项和为Sn,且a1=1,an+1=2Sn+1,数列{bn}满...

设数列{an}的前n项和为Sn,且a1=1,an+1=2Sn+1,数列{bn}满足a1=b1,点P(bn,bn+1)在直线x-y+2=0上,n∈N*
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设manfen5.com 满分网,求数列{cn}的前n项和Tn
(1)要求数列{an},{bn}的通项公式,先要根据已知条件判断,数列是否为等差(比)数列,由a1=1,an+1=2Sn+1,不难得到数列{an}为等比数列,而由数列{bn}满足a1=b1,点P(bn,bn+1)在直线x-y+2=0上,n∈N*,易得数列{bn}是一个等差数列.求出对应的基本量,代入即可求出数列{an},{bn}的通项公式. (2)由(1)中结论,我们易得,即数列{cn}的通项公式可以分解为一个等差数列和一个等比数列相乘的形式,则可以用错位相消法,求数列{cn}的前n项和Tn. 【解析】 (Ⅰ)由an+1=2Sn+1可得an=2Sn-1+1(n≥2), 两式相减得an+1-an=2an, an+1=3an(n≥2). 又a2=2S1+1=3, 所以a2=3a1. 故{an}是首项为1,公比为3的等比数列. 所以an=3n-1. 由点P(bn,bn+1)在直线x-y+2=0上,所以bn+1-bn=2. 则数列{bn}是首项为1,公差为2的等差数列. 则bn=1+(n-1)•2=2n-1 (Ⅱ)因为,所以. 则, 两式相减得:. 所以=.
复制答案
考点分析:
相关试题推荐
如图所示,某公园要在一块绿地的中央修建两个相同的矩形的池塘,每个面积为10000米2,池塘前方要留4米宽的走道,其余各方为2米宽的走道,问每个池塘的长宽各为多少米时占地总面积最少?

manfen5.com 满分网 查看答案
如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1,M是A1B的中点.
(Ⅰ)在线段B1C1上是否存在一点N,使得MN⊥平面A1BC?若存在,找出点N的位置幷证明;若不存在,请说明理由;
(Ⅱ)求平面A1AB和平面A1BC所成角的大小.

manfen5.com 满分网 查看答案
已知△ABC中,内角A,B,C的对边分别为a,b,c,已知a,b,c成等比数列,manfen5.com 满分网
(Ⅰ)求manfen5.com 满分网的值;
(Ⅱ)设manfen5.com 满分网的值.
查看答案
已知a>0,a≠1,设p:函数y=loga(x+1)在(0,+∞)上单调递减;q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点.如果p且q为假命题,p或q为真命题,求a的取值范围.
查看答案
正项的等差数列{an}中,2a3-a72+2a11=0,数列{bn}是等比数列,且b7=a7,则b6b8=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.