(1)由点A和原点坐标,求出直线OA的斜率,根据两直线垂直时斜率的乘积为-1求出直线AB的斜率,然后由求出的斜率与点A的坐标写出直线AB的方程即可;
(2)由B为直线AB与x轴的交点,故令第一问求出的直线AB的方程中的y等于0,求出x的值即为B的横坐标,确定出B的坐标,进而得到线段OB的中点坐标即为外接圆圆心坐标,线段OB的一半即为圆的半径,根据圆心和半径写出圆的标准方程,化为圆的一般式方程即可.
【解析】
(1)由△OAB为直角三角形,
得到OA⊥AB,又,
∴kAB=2,
∴直线AB的方程为y+2=2(x-4),即2x-y-10=0;
(2)由(1)可知:B(5,0)
∴直角△OAB的外接圆的圆心为线段OB的中点(,0),r=,
∴△OAB的外接圆的方程为,即x2+y2-5x=0.