满分5 > 高中数学试题 >

已知二次函数f(x)=ax2+bx+c的导数为f′(x),f′(0)>0,对于任...

已知二次函数f(x)=ax2+bx+c的导数为f′(x),f′(0)>0,对于任意实数x都有f(x)≥0,则manfen5.com 满分网的最小值为   
先根据题目的条件建立关于a、b、c的关系式,再结合基本不等式求出最小即可,注意等号成立的条件. 【解析】 ∵f(x)=ax2+bx+c ∴f′(x)=2ax+b,f′(0)=b>0 ∵对任意实数x都有f(x)≥0 ∴a>0,c>0,b2-4ac≤0即 则= 而 ∴=≥2 故答案为2
复制答案
考点分析:
相关试题推荐
若数列{an}是等差数列,对于bn=manfen5.com 满分网(a1+a2+..+an),则数列{bn}也是等差数列.类比上述性质,若数列{cn}是各项都为正数的等比数列,对于dn>0,则dn=    时,数列{dn}也是等比数列. 查看答案
已知数列{an}、{bn}满足:manfen5.com 满分网
(1)求b1,b2,b3,b4
(2)求数列{bn}的通项公式;
(3)设Sn=a1a2+a2a3+a3a4+…+anan+1,求实数a为何值时4aSn<bn恒成立.
查看答案
设函数f(x)=ln(2x+3)+x2
(1)讨论f(x)的单调性;
(2)求f(x)在区间[-manfen5.com 满分网manfen5.com 满分网]的最大值和最小值.
查看答案
已知f(x)=∫1x(4t3-manfen5.com 满分网)dt求f(1-i)•f(i).
查看答案
若f(n)为n2+1(n∈N*)的各位数字之和,如142+1=197,1+9+7=17,则f(14)=17,记f1(n)=f(n),f2(n)=f(f1(n)),…,fk+1(n)=f(fk(n)),k∈N*,则f2008(8)=    查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.