满分5 > 高中数学试题 >

函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x...

函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为( )
A.(-1,1)
B.(-1,+∞)
C.(-∞,-l)
D.(-∞,+∞)
把所求的不等式的右边移项到左边后,设左边的式子为F(x)构成一个函数,把x=-1代入F(x)中,由f(-1)=2出F(-1)的值,然后求出F(x)的导函数,根据f′(x)>2,得到导函数大于0即得到F(x)在R上为增函数,根据函数的增减性即可得到F(x)大于0的解集,进而得到所求不等式的解集. 【解析】 设F(x)=f(x)-(2x+4), 则F(-1)=f(-1)-(-2+4)=2-2=0, 又对任意x∈R,f′(x)>2,所以F′(x)=f′(x)-2>0, 即F(x)在R上单调递增, 则F(x)>0的解集为(-1,+∞), 即f(x)>2x+4的解集为(-1,+∞). 故选B
复制答案
考点分析:
相关试题推荐
设函数manfen5.com 满分网,若f(x1)>f(x2),则下列不等式必定成立的是( )
A.x1+x2>0
B.x12>x22
C.x1>x2
D.x1<x2
查看答案
已知p:|x+1|>2,q:x>a,且¬p是¬q的充分不必要条件,则实数a的取值范围可以是( )
A.a≥1
B.a≤1
C.a≥-1
D.a≤-3
查看答案
函数f(x)=x3+bx2+cx+d图象如图,则函数y=x2+manfen5.com 满分网bx+manfen5.com 满分网的单调递增区间为( )
manfen5.com 满分网
A.(-∞,-2]
B.[3,+∞)
C.[-2,3]
D.[manfen5.com 满分网,+∞)
查看答案
设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1-x),则manfen5.com 满分网=( )
A.-manfen5.com 满分网
B.-manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
已知manfen5.com 满分网,则( )
A.a>b>c
B.b>a>c
C.a>c>b
D.c>a>b
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.