满分5 > 高中数学试题 >

已知a是实数,函数 (Ⅰ)求函数f(x)的单调区间; (Ⅱ)设g(a)为f(x)...

已知a是实数,函数manfen5.com 满分网
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)设g(a)为f(x)在区间[0,2]上的最小值.
(i)写出g(a)的表达式;
(ii)求a的取值范围,使得-6≤g(a)≤-2.
(Ⅰ)求出函数的定义域[0,+∞),求出f′(x),因为a为实数,讨论a≤0,(x>0)得到f′(x)>0得到函数的单调递增区间;若a>0,令f'(x)=0,得到函数驻点讨论x取值得到函数的单调区间即可. (Ⅱ)①讨论若a≤0,f(x)在[0,2]上单调递增,所以g(a)=f(0)=0;若0<a<6,f(x)在上单调递减,在上单调递增,所以;若a≥6,f(x)在[0,2]上单调递减,所以.得到g(a)为分段函数,写出即可;②令-6≤g(a)≤-2,代到第一段上无解;若0<a<6,解得3≤a<6;若a≥6,解得.则求出a的取值范围即可. 解;(Ⅰ)【解析】 函数的定义域为[0,+∞),(x>0). 若a≤0,则f'(x)>0,f(x)有单调递增区间[0,+∞). 若a>0,令f'(x)=0,得,当时,f'(x)<0, 当时,f'(x)>0.f(x)有单调递减区间,单调递增区间. (Ⅱ)【解析】 (i)若a≤0,f(x)在[0,2]上单调递增,所以g(a)=f(0)=0. 若0<a<6,f(x)在上单调递减,在上单调递增, 所以.若a≥6,f(x)在[0,2]上单调递减, 所以. 综上所述,改天 (ii)令-6≤g(a)≤-2.若a≤0,无解.若0<a<6,解得3≤a<6. 若a≥6,解得.故a的取值范围为.
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网,求导函数f'(x),并确定f(x)的单调区间.
查看答案
已知函数f(x)=ax3+cx+d(a≠0)是R上的奇函数,当x=1时,f(x)取得极值-2.
(I)求函数f(x)的解析式;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)当x∈[-3,3]时,f(x)<m恒成立,求实数m的取值范围.
查看答案
求曲线manfen5.com 满分网和y=x2在它们交点处的两条切线与x轴所围成的三角形面积.
查看答案
我们知道等比数列与等差数列在许多地方都有类似的性质,请由等差数列{an}的前n项和公式manfen5.com 满分网(d为公差),类比地得到等比数列{bn}的前n项积公式Tn=    (q为公比) 查看答案
函数y=xlnx的单调递减区间是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.