满分5 > 高中数学试题 >

如图,AB是⊙O的直径,C,F是⊙O上的点,OC垂直于直径AB, 过F点作⊙O的...

manfen5.com 满分网如图,AB是⊙O的直径,C,F是⊙O上的点,OC垂直于直径AB,
过F点作⊙O的切线交AB的延长线于D、连接CF交AB于E点,
(1)求证:DE2=DB•DA;
(2)若⊙O的半径为manfen5.com 满分网,OB=manfen5.com 满分网OE,求EF的长.
(1)连接OF,利用切线的性质及角之间的互余关系得到DF=DE,再结合切割线定理即可证明DE2=DB•DA; (2)由圆中相交弦定理得CE•EF=AE•EB,结合直角三角形中边的关系,先求出AE和EB,从而求出EF的长. 【解析】 (1)连接OF, ∵DF切⊙O于F, ∴∠OFD=90°, ∴∠OFC+∠CFD=90°, ∵OC=OF, ∴∠OCF=∠OFC, ∵CO⊥AB于O, ∴∠OCF+∠CEO=90°, ∴∠CFD=∠CEO=∠DEF, ∴DF=DE, ∵DF是⊙O的切线, ∴DF2=DB•DA, ∴DE2=DB•DA; (2),CO=,, ∵CE•EF=AE•EB=(+2)(-2)=8, ∴EF=2
复制答案
考点分析:
相关试题推荐
已知二次函数f(x)=ax2+bx+c(a,b,c均为实数),满足a-b+c=0,对于任意实数x 都有f (x)-x≥0,并且当x∈(0,2)时,有f (x)≤manfen5.com 满分网
(1)求f (1)的值;
(2)证明:ac≥manfen5.com 满分网
(3)当x∈[-2,2]且a+c取得最小值时,函数F(x)=f (x)-mx (m为实数)是单调的,求证:m≤manfen5.com 满分网或m≥manfen5.com 满分网
查看答案
已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y)且当x>0,f(x)<0.又f(1)=-2.
(1)判断函数f(x)的奇偶性;
(2)求函数f(x)在区间[-3,3]上的最大值;
(3)解关于x的不等式f(ax2)-2f(x)<f(ax)+4.
查看答案
已知函数manfen5.com 满分网,其中a,b∈R.
(Ⅰ)若曲线y=f(x)在点P(2,f(2))处的切线方程为y=3x+1,求函数f(x)的解析式;
(Ⅱ)讨论函数f(x)的单调性;
(Ⅲ)若对于任意的manfen5.com 满分网,不等式f(x)≤10在manfen5.com 满分网上恒成立,求b的取值范围.
查看答案
设函数manfen5.com 满分网(a,b为常数),且方程manfen5.com 满分网有两个实根为x1=-1,x2=2,
(1)求y=f(x)的解析式;
(2)证明:曲线y=f(x)的图象是一个中心对称图形,并求其对称中心.
查看答案
已知集合A=manfen5.com 满分网
(1)当m=3时,求A∩(∁RB);
(2)若A∩B={x|-1<x<4},求实数m的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.