满分5 > 高中数学试题 >

对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:设f′′(x)是...

对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:设f′′(x)是函数y=f(x)的导函数y=f′(x)的导数,若f′′(x)=0有实数解x,则称点(x,f(x))为函数y=f(x)的“拐点”.现已知f(x)=x3-3x2+2x-2,请解答下列问题:
(Ⅰ)求函数f(x)的“拐点”A的坐标;
(Ⅱ)求证f(x)的图象关于“拐点”A 对称;并写出对于任意的三次函数都成立的有关“拐点”的一个结论(此结论不要求证明);
(Ⅲ)若另一个三次函数G(x)的“拐点”为B(0,1),且一次项系数为0,当x1>0,x2>0(x1≠x2)时,试比较manfen5.com 满分网manfen5.com 满分网的大小.
(1)先求f′(x)得解析式,再求f″(x),由f″(x)=0 求得拐点的横坐标,代入函数解析式求拐点的坐标. 【解析】 (1)f′(x)=3x2-6x+2…(1分)f″(x)=6x-6令f″(x)=6x-6=0得x=1…(2分)f(1)=13-3+2-2=-2∴拐点A(1,-2)…(3分) (2)设P(x,y)是y=f(x)图象上任意一点,则y=x3-3x2+2x-2,因为P(x,y)关于A(1,-2)的对称点为P'(2-x,-4-y), 把P'代入y=f(x)得左边=-4-y=-x3+3x2-2x-2 右边=(2-x)3-3(2-x)2+2(2-x)-2=-x3+3x2-2x-2∴右边=右边∴P′(2-x,-4-y)在y=f(x)图象上∴y=f(x)关于A对称        …(7分) 结论:①任何三次函数的拐点,都是它的对称中心 ②任何三次函数都有“拐点” ③任何三次函数都有“对称中心”(写出其中之一)…(9分) (3)设G(x)=ax3+bx2+d,则G(0)=d=1…(10分)∴G(x)=ax3+bx2+1,G'(x)=3ax2+2bx,G''(x)=6ax+2bG''(0)=2b=0,b=0,∴G(x)=ax3+1=0…(11分) 法一:======…(13分) 当a>0时, 当a<0时,…(14分) 法二:G′′(x)=3ax,当a>0时,且x>0时,G′′(x)>0,∴G(x)在(0,+∞)为凹函数,∴…(13分) 当a<0时,G′′(x)<0,∴G(x)在(0,+∞)为凸函数∴…(14分)
复制答案
考点分析:
相关试题推荐
已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都在坐标原点,过点M(4,0)的直线l与抛物线C2分别相交于A,B两点.
(Ⅰ)写出抛物线C2的标准方程;
(Ⅱ)若manfen5.com 满分网,求直线l的方程;
(Ⅲ)若坐标原点O关于直线l的对称点P在抛物线C2上,直线l与椭圆C1有公共点,求椭圆C1的长轴长的最小值.
查看答案
已知在多面体ABCDE中,AB⊥平面ACD,DE∥AB,AC=AD=CD=DE=2,F为CD的中点.
(Ⅰ)求证:AF⊥平面CDE;
(Ⅱ)求平面ABC和平面CDE所成的小于90?的二面角的大小;
(Ⅲ)求点A到平面BCD的距离的取值范围.

manfen5.com 满分网 查看答案
某汽车配件厂生产A、B两种型号的产品,A型产品的一等品率为manfen5.com 满分网,二等品率为manfen5.com 满分网;B型产品的一等品率为manfen5.com 满分网,二等品率为manfen5.com 满分网.生产1件A型产品,若是一等品则获得4万元利润,若是二等品则亏损1万元;生产1件B型产品,若是一等品则获得6万元利润,若是二等品则亏损2万元.设生产各件产品相互独立.
(1)求生产4件A型产品所获得的利润不少于10万元的概率;
(2)记X(单位:万元)为生产1件A型产品和1件B型产品可获得的利润,求X的分布列及期望值.
查看答案
已知△ABC中,角A,B,C的对边分别为a,b,c,manfen5.com 满分网且△ABC的面积S≥2,
(1)求A的取值范围;
(2)求函数manfen5.com 满分网的最值.
查看答案
已知数列{an}的前n项和Sn满足manfen5.com 满分网(P为常数,且P≠0,P≠1,n∈N+),数列{bn}是等比数列,且manfen5.com 满分网
(1)求{an}的通项公式;
(2)求P的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.