满分5 > 高中数学试题 >

已知数列{an}是首项为,公比的等比数列,设,数列{cn}满足cn=an•bn....

已知数列{an}是首项为manfen5.com 满分网,公比manfen5.com 满分网的等比数列,设manfen5.com 满分网,数列{cn}满足cn=an•bn
(1)求证:{bn}是等差数列;
(2)求数列{cn}的前n项和Sn
(3)若manfen5.com 满分网对一切正整数n恒成立,求实数m的取值范围.
(1)根据等比数列的通项公式可求得an,代入求得bn+1-bn为常数,进而判断出数列{bn}是等差数列. (2)由(1)可分别求得an和bn,进而求得Cn进而用错位相减法进行求和. (3)把(2)中的Cn,代入Cn+1-Cn结果小于0,进而判断出当n≥2时,Cn+1<Cn,进而可推断出当n=1时,Cn取最大值,问题转化为≥,求得m的取值范围. 【解析】 (1)由题意知,an=()n. ∵, ∴b1=1 ∴bn+1-bn=3an+1=3an=3=3q=3 ∴数列{bn}是首项为1,公差为3的等差数列. (2)由(1)知,an=()n.bn=3n-2 ∴Cn=(3n-2)×()n. ∴Sn=1×+4×()2+…+(3n-2)×()n, 于是Sn=1×()2+4×()3+…(3n-2)×()n+1, 两式相减得Sn=+3×[()2+()3+…+()n)-(3n-2)×()n+1, =-(3n-2)×()n+1, ∴Sn=-()n+1 (3)∵Cn+1-Cn=(3n+1)×()n+1-(3n-2)×()n=9(1-n)×()n+1, ∴当n=1时,C2=C1= 当n≥2时,Cn+1<Cn,即C2=C1>C3>C4<…>Cn ∴当n=1时,Cn取最大值是 又 ∴≥ 即m2+4m-5≥0解得m≥1或m≤-5.
复制答案
考点分析:
相关试题推荐
甲、乙两人同时参加奥运志愿者选拔赛的考试,已知在备选的10道题中,甲能答对其中的6道题,乙能答对其中的8道题.规定每次考试都从备选题中随机抽出3道题进行测试,至少答对2道题才能入选.
(I)求甲答对试题数ξ的分布列及数学期望;
(II)求甲、乙两人至少有一人入选的概率.
查看答案
在△ABC中,角A、B、C的对边分别为a,b,c,已知manfen5.com 满分网.设B=x,△ABC的周长为y.
(1)求函数y=f(x)的解析式和定义域;
(2)求y=f(x)的单调区间.
查看答案
已知manfen5.com 满分网1的展开式中的常数项为T,f(x)是以T为周期的偶函数,且当x∈[0,1]时,f(x)=x,若在区间[-1,3]内,函数g(x)=f(x)-kx-k有4个零点,则实数k的取值范围是    查看答案
已知一个凸多面体共有9个面,所有棱长均为1,其平面展开图如图所示,则该凸多面体的体积V=   
manfen5.com 满分网 查看答案
以椭圆manfen5.com 满分网的右焦点为圆心,且与双曲线manfen5.com 满分网的渐近线相切的圆的方程为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.