满分5 > 高中数学试题 >

已知f(x)、g(x)分别是R上的奇函数、偶函数,且f(x)-g(x)=ex (...

已知f(x)、g(x)分别是R上的奇函数、偶函数,且f(x)-g(x)=ex
(Ⅰ)f(x),g(x)的解析式;
(Ⅱ)证明:f(x)在(-∞,+∞)上是增函数.
(Ⅰ)由题意用-x代替x,得f(-x)-g(-x)=e-x,利用f(x)、g(x)分别是R上的奇函数、偶函数,转化为关于 f(x)和g(x)另外一个方程,再与已知方程联列,解之可得f(x),g(x)的解析式; (Ⅱ)由(I)得,求出其导函数,可以得出导函数在(-∞,+∞)上恒为负值,因此可得f(x)在(-∞,+∞)上是增函数. 【解析】 (Ⅰ)∵f(x),g(x)分别为R上的奇函数,偶函数f(x)-g(x)=ex①∴f(-x)-g(-x)=e-x∴-f(x)-g(x)=e-x②①-②得: ①+②得: (Ⅱ)证明:由(1)知 所以 ,即导函数在(-∞,+∞)上恒为正值 因此f(x)在(-∞,+∞)上为增函数
复制答案
考点分析:
相关试题推荐
已知函数f(x)=-x2+8x,求f(x)在区间[t,t+1]上的最大值h(t).
查看答案
已知f(x)为R上的偶函数,对任意x∈R都有f(x+6)=f(x)+f(3)且当x1,x2∈[0,3],x1≠x2时,有manfen5.com 满分网>0成立,给出四个命题:
①f(3)=0; ②直线x=-6是函数y=f(x)的图象的一条对称轴;
③函数y=f(x)在[-9,-6]上为增函数;   ④函数y=f(x)在[-9,9]上有四个零点.
其中所有正确命题的序号为______
查看答案
在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间内,若两个正四面体的棱长的比为1:2,则它们的体积比为    查看答案
已知集合A={x|log2x≤2},B=(-∞,a),若A⊆B则实数a的取值范围是(c,+∞),其中c=    查看答案
不等式manfen5.com 满分网的解集是     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.