满分5 > 高中数学试题 >

设函数f(x)=x3-3ax+b(a≠0). (Ⅰ)若曲线y=f(x)在点(2,...

设函数f(x)=x3-3ax+b(a≠0).
(Ⅰ)若曲线y=f(x)在点(2,f(2))处与直线y=8相切,求a,b的值;
(Ⅱ)求函数f(x)的单调区间与极值点.
(1)已知函数的解析式f(x)=x3-3ax+b,把点(2,f(2))代入,再根据f(x)在点(2,f(2))处与直线y=8相切,求出a,b的值; (2)由题意先对函数y进行求导,解出极值点,然后再根据极值点的值讨论函数的增减性及其增减区间; 【解析】 (Ⅰ)f′(x)=3x2-3a, ∵曲线y=f(x)在点(2,f(2))处与直线y=8相切, ∴ (Ⅱ)∵f′(x)=3(x2-a)(a≠0), 当a<0时,f′(x)>0,函数f(x)在(-∞,+∞)上单调递增,此时函数f(x)没有极值点. 当a>0时,由, 当时,f′(x)>0,函数f(x)单调递增, 当时,f′(x)<0,函数f(x)单调递减, 当时,f′(x)>0,函数f(x)单调递增, ∴此时是f(x)的极大值点,是f(x)的极小值点.
复制答案
考点分析:
相关试题推荐
围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:米).
(1)将修建围墙的总费用y表示成x的函数;
(2)当x为何值时,修建此矩形场地围墙的总费用最小?并求出最小总费用.

manfen5.com 满分网 查看答案
设集合manfen5.com 满分网,B={x|(x-m+1)(x-2m-1)<0}.
(1)求A∩Z;
(2)若A⊇B,求m的取值范围.
查看答案
已知f(x)、g(x)分别是R上的奇函数、偶函数,且f(x)-g(x)=ex
(Ⅰ)f(x),g(x)的解析式;
(Ⅱ)证明:f(x)在(-∞,+∞)上是增函数.
查看答案
已知函数f(x)=-x2+8x,求f(x)在区间[t,t+1]上的最大值h(t).
查看答案
已知f(x)为R上的偶函数,对任意x∈R都有f(x+6)=f(x)+f(3)且当x1,x2∈[0,3],x1≠x2时,有manfen5.com 满分网>0成立,给出四个命题:
①f(3)=0; ②直线x=-6是函数y=f(x)的图象的一条对称轴;
③函数y=f(x)在[-9,-6]上为增函数;   ④函数y=f(x)在[-9,9]上有四个零点.
其中所有正确命题的序号为______
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.