满分5 > 高中数学试题 >

设f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)...

manfen5.com 满分网设f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能的是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
先根据导函数的图象确定导函数大于0 的范围和小于0的x的范围,进而根据当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减确定原函数的单调增减区间. 【解析】 由y=f'(x)的图象易得当x<0或x>2时,f'(x)>0, 故函数y=f(x)在区间(-∞,0)和(2,+∞)上单调递增; 当0<x<2时,f'(x)<0,故函数y=f(x)在区间(0,2)上单调递减; 故选C.
复制答案
考点分析:
相关试题推荐
抛掷两枚骰子,当至少有一枚5点或一枚6点出现时,就说这次实验成功,则在30次实验中成功次数X的期望是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.10
查看答案
设函数f(x)=x3-3ax+b(a≠0).
(Ⅰ)若曲线y=f(x)在点(2,f(2))处与直线y=8相切,求a,b的值;
(Ⅱ)求函数f(x)的单调区间与极值点.
查看答案
围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:米).
(1)将修建围墙的总费用y表示成x的函数;
(2)当x为何值时,修建此矩形场地围墙的总费用最小?并求出最小总费用.

manfen5.com 满分网 查看答案
设集合manfen5.com 满分网,B={x|(x-m+1)(x-2m-1)<0}.
(1)求A∩Z;
(2)若A⊇B,求m的取值范围.
查看答案
已知f(x)、g(x)分别是R上的奇函数、偶函数,且f(x)-g(x)=ex
(Ⅰ)f(x),g(x)的解析式;
(Ⅱ)证明:f(x)在(-∞,+∞)上是增函数.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.