满分5 > 高中数学试题 >

设函数f(x)=ln(x+a)+x2 (I)若当x=-1时,f(x)取得极值,求...

设函数f(x)=ln(x+a)+x2
(I)若当x=-1时,f(x)取得极值,求a的值,并讨论f(x)的单调性;
(II)若f(x)存在极值,求a的取值范围,并证明所有极值之和大于manfen5.com 满分网
(I)先求函数定义域,然后对函数求导,由题意可得,f′(-1)=0,代入可求a,代入a的值,分别解f′(x)>0,f′(x)<0,求解即可. (II)由题意可得在区间(-a,+∞)上,f′(x)=0有根,结合一元二次方程根的存在情况讨论该方程的△=4a2-8,求a的取值范围,结合a的取值,把极值点代入函数f(x)可得, 【解析】 (Ⅰ), 依题意有f'(-1)=0,故. 从而. f(x)的定义域为,当时,f'(x)>0; 当时,f'(x)<0; 当时,f'(x)>0. 从而,f(x)分别在区间单调增加,在区间单调减少. (Ⅱ)f(x)的定义域为(-a,+∞),. 方程2x2+2ax+1=0的判别式△=4a2-8. (ⅰ)若△<0,即,在f(x)的定义域内f'(x)>0,故f(x)的极值. (ⅱ)若△=0,则或. 若,,. 当时,f'(x)=0, 当时,f'(x)>0,所以f(x)无极值. 若,,,f(x)也无极值. (ⅲ)若△>0,即或,则2x2+2ax+1=0有两个不同的实根,. 当时,x1<-a,x2<-a,从而f'(x)有f(x)的定义域内没有零点, 故f(x)无极值. 当时,x1>-a,x2>-a,f'(x)在f(x)的定义域内有两个不同的零点, 由根值判别方法知f(x)在x=x1,x=x2取得极值. 综上,f(x)存在极值时,a的取值范围为. f(x)的极值之和为.
复制答案
考点分析:
相关试题推荐
在添加剂的搭配使用中,为了找到最佳的搭配方案,需要对各种不同的搭配方式作比较.在试制某种牙膏新品种时,需要选用两种不同的添加剂.现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用.根据试验设计原理,通常首先要随机选取两种不同的添加剂进行搭配试验.用ξ表示所选用的两种不同的添加剂的芳香度之和.
(Ⅰ)写出ξ的分布列;(以列表的形式给出结论,不必写计算过程)
(Ⅱ)求ξ的数学期望Eξ.(要求写出计算过程或说明道理)
查看答案
若函数f(x)=ax3-bx+4,当x=2时,函数f(x)有极值为manfen5.com 满分网
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若f(x)=k有3个解,求实数k的取值范围.
查看答案
为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n株沙柳,各株沙柳成活与否是相互独立的,成活率为p,设ξ为成活沙柳的株数,数学期望Eξ=3,标准差σξ为manfen5.com 满分网
(Ⅰ)求n,p的值并写出ξ的分布列;
(Ⅱ)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率.
查看答案
甲、乙俩人各进行3次射击,甲每次击中目标的概率为manfen5.com 满分网,乙每次击中目标的概率为manfen5.com 满分网
(Ⅰ)记甲恰好击中目标2次的概率;
(Ⅱ)求乙至少击中目标2次的概率;
(Ⅲ)求乙恰好比甲多击中目标2次的概率;
查看答案
某保险公司经营某航空公司的意外伤害保险业务.每份保单保险费为20元,若出现意外,赔付金额45万元,而出现意外的概率是10-6.则每份保单预期收入为    元.(结果精确到0.1). 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.