满分5 > 高中数学试题 >

已知△ABC的顶点A,B在椭圆x2+3y2=4上,C在直线l:y=x+2上,且A...

已知△ABC的顶点A,B在椭圆x2+3y2=4上,C在直线l:y=x+2上,且AB∥l.
(Ⅰ)当AB边通过坐标原点O时,求AB的长及△ABC的面积;
(Ⅱ)当∠ABC=90°,且斜边AC的长最大时,求AB所在直线的方程.
(1)注意到直线AB和l平行,则斜率相等,得到直线AB的方程.再由以AB为底,计算三角形面积. (2)由弦长公式算出AB,点到直线的距离算出BC,再根据勾股定理,得到AC的表达式,从而求出最大值. 【解析】 (Ⅰ)因为AB∥l,且AB边通过点(0,0),所以AB所在直线的方程为y=x. 设A,B两点坐标分别为(x1,y1),(x2,y2). 由得x=±1. 所以|AB|=. 又因为AB边上的高h等于原点到直线l的距离. 所以h=,S△ABC=|•h=2. (Ⅱ)设AB所在直线的方程为y=x+m, 由得4x2+6mx+3m2-4=0. 因为A,B在椭圆上, 所以△=-12m2+64>0. 设A,B两点坐标分别为(x1,y1),(x2,y2), 则x1+x2=-,x1x2=, 所以|AB|=. 又因为BC的长等于点(0,m)到直线l的距离,即|BC|=. 所以|AC|2=|AB|2+|BC|2=-m2-2m+10=-(m+1)2+11. 所以当m=-1时,AC边最长,(这时△=-12+64>0) 此时AB所在直线的方程为y=x-1.
复制答案
考点分析:
相关试题推荐
已知数列{an}中,a1=1,且点(an,an+1)在函数f(x)=x+2的图象上(n∈N*
(I)证明数列{an}是等差数列,并求数列{an}的通项公式;
(II)设数列{bn}满足manfen5.com 满分网,求数列{bn}的通项公式及前n项和公式Sn
查看答案
如图,三棱锥P-ABC中,PA⊥底面ABC,△ABC为等边三角形,D,E分别是BC,CA的中点.
(1)证明:平面PBE⊥平面PAC;
(2)如何在BC上找一点F,使AD∥平面PEF并说明理由;
(3)若PA=AB=2,对于(Ⅱ)中的点F,求三棱锥P-BEF的体积.

manfen5.com 满分网 查看答案
设A,B,C为△ABC的三个内角,其对边分别a,b,c.manfen5.com 满分网manfen5.com 满分网,且manfen5.com 满分网
(1)求角A的大小;
(2)若△ABC的面积S=manfen5.com 满分网,求b+c的值.
查看答案
设函数f(x)=(sinωx+cosωx)2+2cos2ωx(ω>0)的最小正周期为manfen5.com 满分网
(Ⅰ)求ω的值.
(Ⅱ)若函数y=g(x)的图象是由y=f(x)的图象向右平移manfen5.com 满分网个单位长度得到,写出y=g(x)的解析式及并求y=g(x)的单调递增区间.
查看答案
曲线f(x)=ax2+bx+c(a>0,b,c∈R)通过点P(0,2a2+8),在点Q(-1,f(-1)) 处的切线垂直于y轴,则manfen5.com 满分网的最小值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.