满分5 > 高中数学试题 >

已知函数f(x)=-+2ax2-3a2x+1,0<a<1. (Ⅰ)求函数f(x)...

已知函数f(x)=-manfen5.com 满分网+2ax2-3a2x+1,0<a<1.
(Ⅰ)求函数f(x)的极大值;
(Ⅱ)若x∈[1-a,1+a]时,恒有-a≤f′(x)≤a成立(其中f′(x)是函数f(x)的导函数),试确定实数a的取值范围.
(I)对函数求导,结合f′(x)>0,f′(x)<0,f′(x)=0可求解 (II)由题意可得-a≤-x2+4ax-3a2≤a在[1-a,1+a]恒成立,结合二次函数的对称轴x=2a与区间[1-a,1+a]与的位置分类讨论进行求解. 【解析】 (Ⅰ)f′(x)=-x2+4ax-3a2,且0<a<1,(1分) 当f′(x)>0时,得a<x<3a; 当f′(x)<0时,得x<a或x>3a; ∴f(x)的单调递增区间为(a,3a); f(x)的单调递减区间为(-∞,a)和(3a,+∞).(5分) 故当x=3a时,f(x)有极大值,其极大值为f(3a)=1.(6分) (Ⅱ)f′(x)=-x2+4ax-3a2=-(x-2a)2+a2, ⅰ)当2a≤1-a时,即时,f′(x)在区间[1-a,1+a]内单调递减. ∴[f′(x)]max=f′(1-a)=-8a2+6a-1,[f′(x)]min=f′(1+a)=2a-1. ∵-a≤f′(x)≤a,∴∴∴. 此时,.(9分) ⅱ)当2a>1-a,且2a<a+1时,即,[f′(x)]max=f′(2a)=a2. ∵-a≤f′(x)≤a,∴即 ∴∴. 此时,.(12分) ⅲ)当2a≥1+a时,得a≥1与已知0<a<1矛盾.(13分) 综上所述,实数a的取值范围为.(14分)
复制答案
考点分析:
相关试题推荐
已知各项均为正数的数列{an},设其前n项和为Sn,且满足:manfen5.com 满分网
(1)求a1,a2,a3
(2)求出数列{an}的通项公式;
(3)设manfen5.com 满分网,求数列{bn}的前n项和.
查看答案
已知manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
(1)求函数在[0,π]上的单调增区间;
(2)当manfen5.com 满分网时,f(x)的最大值为6,求实数m的值.
查看答案
为了了解中学生的身高情况,对某校中学生同年龄的若干名女生的身高进行了测量,将所得数据整理后,画出频率分布直方图(如图),已知图中从左到右五个小组的频率分别为0.017,0.050,0.100,0.133,0.300,第三小组的频数为6(单位:cm).
(1)参加这次测试的学生人数是多少?
(2)身高在哪个范围内的学生人数最多?这一范围内的人数是多少?
(3)如果本次测试身高在154.5 cm以上的为良好,试估计该校学生身高良好率是多少?

manfen5.com 满分网 查看答案
给出下列三个命题:
①函数manfen5.com 满分网manfen5.com 满分网是同一函数;
②若函数y=f(x)与y=g(x)的图象关于直线y=x对称,则函数manfen5.com 满分网与y=g(2x)的图象也关于直线y=x对称;
③若奇函数对定义域内任意x都有f(x)=f(2-x),则f(x)为周期函数.
其中真命题的是    (填序号). 查看答案
设函数g(x)=x2-2(x∈R),manfen5.com 满分网则f(x)的值域是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.