满分5 > 高中数学试题 >

设有一组圆Ck:(x-k+1)2+(y-3k)2=2k4(k∈N*).下列四个命...

设有一组圆Ck:(x-k+1)2+(y-3k)2=2k4(k∈N*).下列四个命题:
①存在一条定直线与所有的圆均相切;
②存在一条定直线与所有的圆均相交;
③存在一条定直线与所有的圆均不相交;
④所有的圆均不经过原点.
其中真命题的代号是    (写出所有真命题的代号).
根据圆的方程找出圆心坐标,发现满足条件的所有圆的圆心在一条直线上,所以这条直线与所有的圆都相交,②正确;根据图象可知这些圆互相内含,不存在一条定直线与所有的圆均相切,不存在一条定直线与所有的圆均不相交,所以①③错;利用反证法,假设经过原点,将(0,0)代入圆的方程,因为左边为奇数,右边为偶数,故不存在k使上式成立,假设错误,则圆不经过原点,④正确. 【解析】 根据题意得:圆心(k-1,3k), 圆心在直线y=3(x+1)上,故存在直线y=3(x+1)与所有圆都相交,选项②正确; 考虑两圆的位置关系, 圆k:圆心(k-1,3k),半径为k2, 圆k+1:圆心(k-1+1,3(k+1)),即(k,3k+3),半径为(k+1)2, 两圆的圆心距d==, 两圆的半径之差R-r=(k+1)2-k2=2k+, 任取k=1或2时,(R-r>d),Ck含于Ck+1之中,选项①错误; 若k取无穷大,则可以认为所有直线都与圆相交,选项③错误; 将(0,0)带入圆的方程,则有(-k+1)2+9k2=2k4,即10k2-2k+1=2k4(k∈N*), 因为左边为奇数,右边为偶数,故不存在k使上式成立,即所有圆不过原点,选项④正确. 则真命题的代号是②④. 故答案为:②④
复制答案
考点分析:
相关试题推荐
已知F1,F2分别为双曲线的左、右焦点,P是为双曲线manfen5.com 满分网左支上的一点,若manfen5.com 满分网,则双曲线的离心率的取值范围是    查看答案
当点(x,y)在直线x+3y-2=0上移动时,则3x+27y+1的最小值为    查看答案
足球场上三个人相互传球,由甲开始发球,并作为第一次传球,经过五次传球后,球又回到甲手中,则不同的传球种数有    种. 查看答案
甲、乙两颗卫星同时监测台风,在同一时刻,甲、乙两颗卫星准确预报台风的概率分别为0.8和0.75,则在同一时刻至少有一颗卫星预报准确的概率为    查看答案
函数f(x)=logax满足f(9)=2,则f-1(-log92)的值是    查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.