已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线
的焦点,离心率等于
.
(1)求椭圆C的方程;
(2)过椭圆C的右焦点F作直线l交椭圆C于A、B两点,交y轴于M点,若
,
,求证:λ
1+λ
2为定值.
考点分析:
相关试题推荐
已知正项数列{a
n}满足:a
1=3,(2n-1)a
n+2=(2n+1)a
n-1+8n
2(n>1,n∈N
*).
(1)求证:数列
是等差数列;
(2)求数列{a
n}的通项a
n;
(3)求
的值.
查看答案
已知函数
,g(x)=2a
2lnx+(a+1)x.
(1)求过点(2,4)与曲线y=f(x)相切的切线方程;
(2)如果函数g(x)在定义域内存在导数为零的点,求实数a的取值范围;
(3)设h(x)=f(x)-g(x),求函数h(x)的单调递增区间.
查看答案
甲、乙两名跳高运动员一次试跳2米高度成功的概率分别为0、7、0、6,且每次试跳成功与否相互之间没有影响,求:
(I)甲试跳三次,第三次才能成功的概率;
(II)甲、乙两人在第一次试跳中至少有一人成功的概率;
(III)甲、乙各试跳两次,甲比乙的成功次数恰好多一次的概率.
查看答案
设函数
,其中向量
=(m,cos2x),
=(1+sin2x,1),x∈R,且y=f(x)的图象经过点
.
(Ⅰ)求实数m的值;
(Ⅱ)求函数f(x)的最小值及此时x值的集合.
查看答案
设有一组圆C
k:(x-k+1)
2+(y-3k)
2=2k
4(k∈N
*).下列四个命题:
①存在一条定直线与所有的圆均相切;
②存在一条定直线与所有的圆均相交;
③存在一条定直线与所有的圆均不相交;
④所有的圆均不经过原点.
其中真命题的代号是
(写出所有真命题的代号).
查看答案