满分5 > 高中数学试题 >

已知函数f(x)=sin x+tan x,项数为27的等差数列{an}满足an∈...

已知函数f(x)=sin x+tan x,项数为27的等差数列{an}满足an∈(-manfen5.com 满分网),且公差d≠0,若f(a1)+f(a2)+…f(a27)=0,则当k=    时,f(ak)=0.
本题考查的知识点是函数的奇偶性及对称性,由函数f(x)=sin x+tan x,项数为27的等差数列{an}满足an∈(-),且公差d≠0,若f(a1)+f(a2)+…f(a27)=0,我们易得a1,a2,…,a27前后相应项关于原点对称,则f(a14)=0,易得k值. 【解析】 因为函数f(x)=sinx+tanx是奇函数, 所以图象关于原点对称,图象过原点. 而等差数列{an}有27项,an∈(). 若f(a1)+f(a2)+f(a3)+…+f(a27)=0, 则必有f(a14)=0, 所以k=14. 故答案为:14
复制答案
考点分析:
相关试题推荐
设{an}是公比为q的等比数列,|q|>1,令bn=an+1(n=1,2,…),若数列{bn}有连续四项在集合{-53,-23,19,37,82}中,则6q=    查看答案
当0≤x≤1时,不等式manfen5.com 满分网成立,则实数k的取值范围是    查看答案
某公司一年购买某种货物400吨,每次都购买x吨,运费为4万元/次,一年的总存储费用为4x万元,要使一年的总运费与总存储费用之和最小,则x=    吨. 查看答案
已知数列{an}满足:a4n-3=1,a4n-1=0,a2n=an,n∈N*,则a2009+a2014=    查看答案
已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99,以Sn表示{an}的前项和,则使得Sn达到最大值的是    查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.