满分5 > 高中数学试题 >

命题“对任意的x∈R,x3-x2+1≤0”的否定是( ) A.不存在x∈R,x3...

命题“对任意的x∈R,x3-x2+1≤0”的否定是( )
A.不存在x∈R,x3-x2+1≤0
B.存在x∈R,x3-x2+1≤0
C.存在x∈R,x3-x2+1>0
D.对任意的x∈R,x3-x2+1>0
根据命题“对任意的x∈R,x3-x2+1≤0”是全称命题,其否定是对应的特称命题,从而得出答案. 【解析】 ∵命题“对任意的x∈R,x3-x2+1≤0”是全称命题 ∴否定命题为:存在x∈R,x3-x2+1>0 故选C.
复制答案
考点分析:
相关试题推荐
设数列{an}的通项公式为an=pn+q(n∈N*,P>0).数列{bn}定义如下:对于正整数m,bm是使得不等式an≥m成立的所有n中的最小值.
(Ⅰ)若manfen5.com 满分网,求b3
(Ⅱ)若p=2,q=-1,求数列{bm}的前2m项和公式;
(Ⅲ)是否存在p和q,使得bm=3m+2(m∈N*)?如果存在,求p和q的取值范围;如果不存在,请说明理由.
查看答案
设数列{an}的前n项和为sn,对任意的正整数n,都有an=5sn+1成立,记manfen5.com 满分网.,
(Ⅰ)求数列{an}与数列{bn}的通项公式;
(Ⅱ)证明:b2k-1+b2k<8(k为正整数);
(Ⅲ)设数列{bn}的前n项和为Rn,是否存在正整数k,使得Rk≥4k成立?若存在,找出一个正整数k;若不存在,请说明理由.
查看答案
设α∈(0,manfen5.com 满分网),函数f(x)的定义域为[0,1],且f(0)=0,f(1)=1,对定义域内任意的x,y,满足f(manfen5.com 满分网)=f(x)sinα+(1-sinα)f(y),求:
(1)f(manfen5.com 满分网)及sinα的值;
(2)函数g(x)=sin(α-2x)的单调递增区间;
(3)(理)n∈N时,an=manfen5.com 满分网,求f(an),并猜测x∈[0,1]时,f(x)的表达式(不需证明).
查看答案
在△ABC中,内角A、B、C的对边长分别为a、b、c,已知a2-c2=2b,且sinAcosC=3cosAsinC,求b
查看答案
设函数manfen5.com 满分网
(1)求函数f(x)的最大值和最小正周期;
(2)解三角方程:f(x)=0.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.