(1)延长EB至F使BF=1,连接C1F,则C1F∥D1E,则C1F与平面BC1D所成角等于D1E与平面BC1D所成角θ,计算出F到BC1D的距离h.则sinθ=
(2)取BC1的中点H,连接DH,CH,则∠DHC为二面角D-BC1-C的平面角,在△DHC中利用余弦定理计算即可.
【解析】
(1)如图
延长EB至F使BF=1,连接C1F,则C1F∥D1E,则C1F与平面BC1D所成角等于D1E与平面BC1D所成角,设为θ,
设F到BC1D的距离为h.,则VC1-DBF=V F-C1BD∴S△DBF×CC1=S△DBC1×h,S△DBF=×BF×DA=1,
S△DBC1=×8=2,∴h=,sinθ=═
(2)取BC1的中点H,连接DH,CH,∵△DBC1为正三角形,BCC1为等腰直角三角形,∴DH⊥BC 1,CH⊥BC 1
∴∠DHC为二面角D-BC1-C的平面角,设为β,在△DHC中,=