满分5 > 高中数学试题 >

已知定义域为(0,+∞)的函数f(x)满足:(1)对任意x∈(0,+∞),恒有f...

已知定义域为(0,+∞)的函数f(x)满足:(1)对任意x∈(0,+∞),恒有f(2x)=2f(x)成立;(2)当x∈(1,2]时,f(x)=2-x.给出如下结论:
①对任意m∈Z,有f(2m)=0;
②存在n∈Z,使得f(2n+1)=9;
③函数f(x)的值域为[0,+∞);
④“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在k∈Z,使得(a,b)⊆(2k,2k+1)”.
其中所有正确结论的序号是   
依据题中条件注意研究每个选项的正确性,连续利用题中第(1)个条件得到①正确;利用反证法及2x变化如下:2,4,8,16,32,判断②命题错误;连续利用题中第③个条件得到③正确;据①③的正确性可得④是正确的. 【解析】 ①f(2m)=f(2•2m-1)=2f(2m-1)=…=2m-1f(2)=0,正确; ②f(2n+1)=2n+1-2n-1,假设存在n使f(2n+1)=9,即存在x1,x2,-=10,又,2x变化如下:2,4,8,16,32,显然不存在,所以该命题错误; ③取x∈(2m,2m+1),则∈(1,2];f()=2-,f()=…=2m()=2m+1-x 从而f(x)∈[0,+∞),正确 ④根据③的分析容易知道该选项正确; 综合有正确的序号是①③④. 故答案为①③④
复制答案
考点分析:
相关试题推荐
设f(x)在[0,+∞)上连续,且manfen5.com 满分网=    查看答案
已知函数y=f(x)(x∈R)满足f(x-1)=f(x+1),且x∈[-1,1]时,f(x)=|x|,若函数y=f(x)-logax,(x>0)的零点个数是3,则a的范围为    查看答案
命题“x∈R,x≤1或x2>4”的否定是     查看答案
M为△ABC内一点,过点M的一直线交AB边于P,交AC边于点Q,则条件p:“manfen5.com 满分网”是条件q:“M点是△ABC的重心”成立的( )
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分又不必要条件
查看答案
manfen5.com 满分网如图,在平面直角坐标系xOy中,A(1,0),B(1,1),C(0,1),映射f将xOy平面上的点P(x,y)对应到另一个平面直角坐标系uO'v上的点P'(2xy,x2-y2),则当点P沿着折线A-B-C运动时,在映射f的作用下,动点P'的轨迹是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.