满分5 > 高中数学试题 >

已知函数f(x)=ax3+bx2-3x(a,b∈R)在点(1,f(1))处的切线...

已知函数f(x)=ax3+bx2-3x(a,b∈R)在点(1,f(1))处的切线方程为y+2=0.
(1)求函数f(x)的解析式;
(2)若对于区间[-2,2]上任意两个自变量的值x1,x2都有|f(x1)-f(x2)|≤c,求实数c的最小值;
(3)若过点M(2,m)(m≠2)可作曲线y=f(x)的三条切线,求实数m的取值范围.
(1)由题意,利用导函数的几何含义及切点的实质建立a,b的方程,然后求解即可; (2)由题意,对于定义域内任意自变量都使得|f(x1)-f(x2)|≤c,可以转化为求函数在定义域下的最值即可得解; (3)由题意,若过点M(2,m)(m≠2)可作曲线y=f(x)的三条切线,等价与函数在切点处导函数值等于切线的斜率这一方程有3解. 【解析】 (1)f'(x)=3ax2+2bx-3.(2分) 根据题意,得即解得 所以f(x)=x3-3x. (2)令f'(x)=0,即3x2-3=0.得x=±1. 当x∈(-∞,-1)时,f′(x)>0,函数f(x)在此区间单调递增; 当x∈(-1,1)时,f′(x)<0,函数f(x)在此区间单调递减 因为f(-1)=2,f(1)=-2, 所以当x∈[-2,2]时,f(x)max=2,f(x)min=-2. 则对于区间[-2,2]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤|f(x)max-f(x)min|=4,所以c≥4. 所以c的最小值为4. (3)因为点M(2,m)(m≠2)不在曲线y=f(x)上,所以可设切点为(x,y). 则y=x3-3x. 因为f'(x)=3x2-3,所以切线的斜率为3x2-3. 则3x2-3=, 即2x3-6x2+6+m=0. 因为过点M(2,m)(m≠2)可作曲线y=f(x)的三条切线, 所以方程2x3-6x2+6+m=0有三个不同的实数解. 所以函数g(x)=2x3-6x2+6+m有三个不同的零点. 则g'(x)=6x2-12x.令g'(x)=0,则x=0或x=2. 当x∈(-∞,0)时,g′(x)>0,函数g(x)在此区间单调递增;当x∈(0,2)时,g′(x)<0,函数g(x)在此区间单调递减; 所以,函数g(x)在x=0处取极大值,在x=2处取极小值,有方程与函数的关系知要满足题意必须满足: ,即,解得-6<m<2.
复制答案
考点分析:
相关试题推荐
已知数列{an}的前n项和Sn=2n,数列{bn}满足b1=-1,bn+1=bn+(2n-1)(n=1,2,3,…).
(1)求数列{an}的通项an
(2)求数列{bn}的通项bn
(3)若manfen5.com 满分网,求数列{cn}的前n项和Tn
查看答案
已知椭圆C的中心在坐标原点,左顶点A(-2,0),离心率manfen5.com 满分网,F为右焦点,过焦点F的直线交椭圆C于P、Q两点(不同于点A).
(Ⅰ)求椭圆C的方程;
(Ⅱ)当manfen5.com 满分网时,求直线PQ的方程.
查看答案
射击运动员在双项飞碟比赛中,每轮比赛连续发射两枪,击中两个飞靶得2分,击中一个飞靶得1分,不击中飞靶得0分,某射击运动员在每轮比赛连续发射两枪时,第一枪命中率为manfen5.com 满分网,第二枪命中率为manfen5.com 满分网,该运动员如进行2轮比赛.
(Ⅰ)求该运动员得4分的概率为多少?
(Ⅱ)若该运动员所得分数为,求的分布列及数学期望.
查看答案
已知函数manfen5.com 满分网,x=2是f(x)的一个极值点.
(Ⅰ)求b的值;(Ⅱ)当x∈[1,3]时,求函数f(x)的最大值.
查看答案
如图,四面体ABCD中,O是BD的中点,△ABD和△BCD均为等边三角形,AB=2,AC=manfen5.com 满分网
(1)求证:AO⊥平面BCD;
(2)求二面角A-BC-D的余弦值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.