满分5 > 高中数学试题 >

已知集合A={(x,y)|x+y=0,x,y∈R},B={(x,y)|x-y=0...

已知集合A={(x,y)|x+y=0,x,y∈R},B={(x,y)|x-y=0,x,y∈R},则集合A∩B的元素个数是( )
A.0
B.1
C.2
D.3
集合的交集问题转化为直线x+y=0和x-y=0的交点问题,作出直线x+y=0和x-y=0,观察它们的图象的交点情况即可. 【解析】 集合的交集问题转化为直线x+y=0和x-y=0的交点问题, 作出直线x+y=0和x-y=0, 观察它们的图象的交点只有一个. 故选B.
复制答案
考点分析:
相关试题推荐
已知等差数列{an}的首项a1=1,公差d>0,且第二项、第五项、第十四项分别是一个等比数列的第二项、第三项、第四项.
(1)求数列{an}的通项公式;
(2)设bn=manfen5.com 满分网,是否存在最大的整数t,使得对任意的n均有Snmanfen5.com 满分网总成立?若存在,求出t;若不存在,请说明理由.
查看答案
设函数f(x)=ax3+bx2-3a2x+1(a,b∈R)在x=x1,x=x2处取得极值,且|x1-x2|=2.
(Ⅰ)若a=1,求b的值,并求f(x)的单调区间;
(Ⅱ)若a>0,求b的取值范围.
查看答案
已知函数f(x)对任意实数x,y均有f(x)+f(y)=2fmanfen5.com 满分网,f(0)≠0,且存在非零常数c,使f(c)=0.
(1)求f(0)的值;
(2)判断f(x)的奇偶性并证明;
(3)求证f(x)是周期函数,并求出f(x)的一个周期.
查看答案
manfen5.com 满分网如图,在菱形ABCD中,∠DAB=60°,PA⊥底面ABCD,且PA=AB=2,E、F分别是AB与PD的中点.
(Ⅰ)求证:PC⊥BD;
(Ⅱ)求证:AF∥平面PEC;
(Ⅲ)求二面角P-EC-D的大小.
查看答案
已知函数f(x)=-x3+3x2+9x+a.
(I)求f(x)的单调递减区间;
(Ⅱ)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.