登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
如图,从圆O外一点P作圆O的割线PAB、PCD,AB是圆O的直径,若PA=4,P...
如图,从圆O外一点P作圆O的割线PAB、PCD,AB是圆O的直径,若PA=4,PC=5,CD=3,则∠CBD=
.
由于题目中并没有给出与角相关的已知条件,故解题的关键是构造三角形,解三角形求角的大小,故根据已知条件,结合割线定理,求出圆的半径是本题的切入点. 【解析】 由割线长定理得: PA•PB=PC•PD 即4×PB=5×(5+3) ∴PB=10 ∴AB=6 ∴R=3, 所以△OCD为正三角形, ∠CBD=∠COD=30°.
复制答案
考点分析:
相关试题推荐
极坐标系中,曲线C
1
:pcosθ=3与C
2
:p=4cosθ(其中p≥0,
)交点的极坐标为
.
查看答案
已知函数y=f(x)的定义域和值域都是[-1,1](其图象如下图所示),函数g(x)=sinx,x∈[-π,π].则方程f(g(x))=0的所有不同实数根的个数是
.
查看答案
的最小值是
.
查看答案
若函数f (x)=a
x
(a>0且a≠1)的反函数为y=f
-1
(x),且
=2,则f (-2)=
.
查看答案
双曲线的中心在坐标原点,离心率等于2,一个焦点的坐标为(0,2),则此双曲线的方程是
.
查看答案
试题属性
题型:填空题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.