满分5 > 高中数学试题 >

如图所示的长方体ABCD-A1B1C1D1中,底面ABCD是边长为2的正方形,O...

manfen5.com 满分网如图所示的长方体ABCD-A1B1C1D1中,底面ABCD是边长为2的正方形,O为AC与BD的交点,manfen5.com 满分网,M是线段B1D1的中点.
(Ⅰ)求证:BM∥平面D1AC;
(Ⅱ)求证:D1O⊥平面AB1C;
(Ⅲ)求二面角B-AB1-C的大小.
(Ⅰ)连接D1O,通过证明D1O∥BM,去证BM∥平面D1AC. (Ⅱ通过证明 OB1⊥D1O.AC⊥D1O,由线面垂直的判定定理去证D1O⊥平面AB1C, (Ⅲ)在平面ABB1中过点B作BE⊥AB1于E,连接EC,证明∠BEC是二面角B-AB1-C的平面角,再再直角三角形BEC中求解. 【解析】 (Ⅰ)连接D1O,如图,∵O、M分别是BD、B1D1的中点,BD1D1B是矩形, ∴四边形D1OBM是平行四边形,∴D1O∥BM. ∵D1O⊂平面D1AC,BM⊄平面D1AC, ∴BM∥平面D1AC. (Ⅱ)连接OB1,∵正方形ABCD的边长为2,, ∴,OB1=2,D1O=2, 则OB12+D1O2=B1D12,∴OB1⊥D1O. ∵在长方体ABCD-A1B1C1D1中,AC⊥BD,AC⊥D1D, ∴AC⊥平面BDD1B1,又D1O⊂平面BDD1B1, ∴AC⊥D1O,又AC∩OB1=O, ∴D1O⊥平面AB1C. (Ⅲ)在平面ABB1中过点B作BE⊥AB1于E,连接EC, ∵CB⊥AB,CB⊥BB1, ∴CB⊥平面ABB1,又AB1⊂平面ABB1, ∴CB⊥AB1,又BE⊥AB1,且CB∩BE=B, ∴AB1⊥平面EBC,而EC⊂平面EBC, ∴AB1⊥EC. ∴∠BEC是二面角B-AB1-C的平面角. 在Rt△BEC中,,BC=2 ∴,∠BEC=60°, ∴二面角B-AB1-C的大小为60°.
复制答案
考点分析:
相关试题推荐
在△ABC中,A、B、C所对的边分别为a、b、c,且manfen5.com 满分网
(1)求sinA;
(2)求cos(B+C)+cos2A的值.
查看答案
如图,从圆O外一点P作圆O的割线PAB、PCD,AB是圆O的直径,若PA=4,PC=5,CD=3,则∠CBD=   
manfen5.com 满分网 查看答案
极坐标系中,曲线C1:pcosθ=3与C2:p=4cosθ(其中p≥0,manfen5.com 满分网)交点的极坐标为     查看答案
已知函数y=f(x)的定义域和值域都是[-1,1](其图象如下图所示),函数g(x)=sinx,x∈[-π,π].则方程f(g(x))=0的所有不同实数根的个数是   
manfen5.com 满分网 查看答案
manfen5.com 满分网的最小值是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.