满分5 > 高中数学试题 >

P是双曲线的右支上一动点,F是双曲线的右焦点,已知A(3,1),则|PA|+|P...

P是双曲线manfen5.com 满分网的右支上一动点,F是双曲线的右焦点,已知A(3,1),则|PA|+|PF|的最小值为   
设双曲线左焦点为F2,根据双曲线的定义可知|PA|+|PF|=|PF2|-2a+|PA|,进而可知当P、F2、A三点共线时有最小值,根据双曲线方程可求的F2的坐标,此时|PF2|+|PA|=|AF2|,利用两点间的距离公式求得答案. 【解析】 设双曲线左焦点为F2,则|PA|+|PF|=|PF2|-2a+|PA|= 当P、F2、A三点共线时有最小值,此时F2(-2,0)、A(3,1)所以 |PF2|+|PA|=|AF2|=,而对于这个双曲线,2a=2, 所以最小值为-2 故答案为-2
复制答案
考点分析:
相关试题推荐
一个几何体的三视图如图所示,其中主视图中△ABC是边长为2的正三角形,俯视图为正六边形,则该几何体的体积为   
manfen5.com 满分网 查看答案
已知manfen5.com 满分网,则manfen5.com 满分网的值等于     查看答案
定义函数y=f(x),x∈D,若存在常数C,对任意的x1∈D,存在唯一的x2∈D,使得manfen5.com 满分网,则称函数f(x)在D上的几何平均数为C.已知f(x)=2x,x∈[1,2],则函数f(x)=2x在[1,2]上的几何平均数为( )
A.manfen5.com 满分网
B.2
C.manfen5.com 满分网
D.4
查看答案
如果有穷数列a1,a2,…,an(n∈N*)满足条件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1,(i=1,2,…,n)我们称其为“对称数列”.例如:数列1,2,3,3,2,1 和数列1,2,3,4,3,2,1都为“对称数列”.已知数列{bn}是项数不超过2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,…,2m-1依次为该数列中连续的前m项,则数列{bn}的前2009项和S2009所有可能为:①22009-1  ②2(22009-1)③3•2m-1-22m-2010-1  ④2m+1-22m-2009-1;其中正确的有( )个.
A.1
B.2
C.3
D.4
查看答案
已知以椭圆manfen5.com 满分网的右焦点F为圆心,a为半径的圆与直线l:manfen5.com 满分网(其中manfen5.com 满分网)交于不同的两点,则该椭圆的离心率的取值范围是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.