满分5 > 高中数学试题 >

已知等比数列{an}中,a6-2a3=2,a5-2a2=1,则等比数列{an}的...

已知等比数列{an}中,a6-2a3=2,a5-2a2=1,则等比数列{an}的公比是( )
A.-1
B.2
C.3
D.4
根据等比数列的通项公式化简已知的两等式,得到关于首项和公比的两个方程,分别记作①和②,把①提取q后,得到的方程记作③,把②代入③即可求出q的值. 【解析】 由a6-2a3=2,a5-2a2=1得: , 由①得:q(a1q4-2a1q)=2③, 把②代入③得:q=2. 故选B
复制答案
考点分析:
相关试题推荐
下列命题中是真命题的为( )
A.∀x∈R,x2<x+1
B.∀x∈R,x2≥x+1
C.∃x∈R,∀y∈R,xy2=y2
D.∀x∈R,∃y∈R,x>y2
查看答案
已知集合M={3,2a},N={a,b},若M∩N={2},则M∪N( )
A.{1,2,3}
B.{0,2,3}
C.{0,1,2}
D.{0,1,3}
查看答案
设M是由满足下列条件的函数f(x)构成的集合:“①方程f(x)-x=0有实数根;②函数f(x)的导数f(x)满足
0<f(x)<1”
(I)证明:函数f(x)=manfen5.com 满分网+manfen5.com 满分网(0≤x<manfen5.com 满分网)是集合M中的元素;
(II)证明:函数f(x)=manfen5.com 满分网+manfen5.com 满分网(0≤xmanfen5.com 满分网)具有下面的性质:对于任意[m,n]⊆[0,manfen5.com 满分网),都存在xo∈(m,n),使得等式f(n)-f(m)=(n-m)f(xo)成立.
(III)若集合M中的元素f(x)具有下面的性质:若f(x)的定义域为D,则对于任意[m,n]⊆D,都存在xo∈(m,n),使得等式f(n)-f(m)=(n-m)f(xo)成立.试用这一性质证明:对集合M中的任一元素f(x),方程f(x)-x=0只有一个实数根.
查看答案
如图,设抛物线C1:y2=4mx(m>0)的准线与x轴交于F1,焦点为F2;以F1,F2为焦点,离心率e=manfen5.com 满分网的椭圆C2与抛物线C1在x轴上方的交点为P,延长PF2交抛物线于点Q,M是抛物线C1上一动点,且M在P与Q之间运动.
(1)当m=1时,求椭圆C2的方程;
(2)当△PF1F2的边长恰好是三个连续的自然数时,求△MPQ面积的最大值.

manfen5.com 满分网 查看答案
如图,在矩形ABCD中,点E,F分别在线段AB,AD上,AE=EB=AF=manfen5.com 满分网FD=4.沿直线EF将△AEF翻折成△A′EF,使平面A′EF⊥平面BEF.
(Ⅰ)求二面角A′-FD-C的余弦值;
(Ⅱ)点M,N分别在线段FD,BC上,若沿直线MN将四边形MNCD向上翻折,使C与A′重合,求线段FM的长.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.