满分5 > 高中数学试题 >

设b和c分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程x2+bx+c=0...

设b和c分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程x2+bx+c=0实根的个数(重根按一个计).
(I)求方程x2+bx+c=0有实根的概率;
(II)求ξ的分布列和数学期望;
(III)求在先后两次出现的点数中有5的条件下,方程x2+bx+c=0有实根的概率.
(I)由题意知,本题是一个等可能事件的概率,试验发生包含的基本事件总数为6×6,满足条件的事件是使方程有实根,则△=b2-4c≥0,对于c的取值进行列举,得到事件数,根据概率公式得到结果. (II)由题意知用随机变量ξ表示方程x2+bx+c=0实根的个数得到ξ的可能取值0,1,2根据第一问做出的结果写出变量对应的概率,写出分布列和期望. (III)在先后两次出现的点数中有5的条件下,方程x2+bx+c=0有实根,这是一个条件概率,做出先后两次出现的点数中有5的概率和先后两次出现的点数中有5的条件下且方程x2+bx+c=0有实根的概率,根据条件概率的公式得到结果. 【解析】 (I)由题意知,本题是一个等可能事件的概率, 试验发生包含的基本事件总数为6×6=36, 满足条件的事件是使方程有实根,则△=b2-4c≥0,即. 下面针对于c的取值进行讨论 当c=1时,b=2,3,4,5,6; 当c=2时,b=3,4,5,6; 当c=3时,b=4,5,6; 当c=4时,b=4,5,6; 当c=5时,b=5,6; 当c=6时,b=5,6, 目标事件个数为5+4+3+3+2+2=19, 因此方程x2+bx+c=0有实根的概率为 (II)由题意知用随机变量ξ表示方程x2+bx+c=0实根的个数得到ξ=0,1,2 根据第一问做出的结果得到 则,,, ∴ξ的分布列为 ∴ξ的数学期望 (III)在先后两次出现的点数中有5的条件下,方程x2+bx+c=0有实根, 这是一个条件概率, 记“先后两次出现的点数中有5”为事件M, “方程ax2+bx+c=0有实根”为事件N, 则,, ∴.
复制答案
考点分析:
相关试题推荐
某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在(29.94,30.06)的零件为优质品.从两个分厂生产的零件中个抽出500件,量其内径尺寸,的结果如下表:
甲厂
分组[29.86,29.90)[29.90,29.94)[29.94,
29.98)
[29.98,
30.02)
[30.02,
30.06)
[30.06,
30.10)
[30.10,
30.14)
频数12638618292614
乙厂
分组[29.86,
29.90)
[29.90,
29.94)
[29.94,
29.98)
[29.98,
30.02)
[30.02,
30.06)
[30.06,
30.10)
[30.10,
30.14)
频数297185159766218
(1)试分别估计两个分厂生产的零件的优质品率;
(2)由于以上统计数据填下面2×2(3)列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”.
 甲厂乙厂合计
优质品   
非优质品   
合计   
附:manfen5.com 满分网
查看答案
2010年广州亚运会乒乓球男单决赛中,马龙与王皓在前三局的比分分别是9:11、11:8、11:7,已知马琳与王皓的水平相当,比赛实行“七局四胜”制,即先赢四局者胜,求(1)王皓获胜的概率; (2)比赛打满七局的概率.(3)记比赛结束时的比赛局数为ξ,求ξ的分布列及数学期望.
查看答案
如右图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,求不同着色方法共有多少种?(以数字作答).

manfen5.com 满分网 查看答案
已知(manfen5.com 满分网n的展开式中第三项与第五项的系数之比为manfen5.com 满分网,求展开式中常数项.
查看答案
manfen5.com 满分网如图是y=f(x)导数的图象,对于下列四个判断:
①f(x)在[-2,-1]上是增函数
②x=-1是f(x)的极小值点;
③f(x)在[-1,2]上是增函数,在[2,4]上是减函数;
④x=3是f(x)的极小值点.
其中判断正确的是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.