满分5 > 高中数学试题 >

甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为与p,且乙投球2次均未...

甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为manfen5.com 满分网与p,且乙投球2次均未命中的概率为manfen5.com 满分网
(Ⅰ)求乙投球的命中率p;
(Ⅱ)求甲投球2次,至少命中1次的概率;
(Ⅲ)若甲、乙两人各投球2次,求两人共命中2次的概率.
(Ⅰ)设出事件,根据运动员互不影响地在同一位置投球,命中率分别为与p,且乙投球2次均未命中的概率为,写出关于p的方程,解方程即可把不合题意的结果舍去. (II)甲投球2次,至少命中1次,表示有一次命中,或有两次命中,写出事件对应的概率表示式,得到结果. (III)甲、乙两人各投球2次,两人共命中2次有三种情况:甲、乙两人各中一次;甲中两次,乙两次均不中;甲两次均不中,乙中2次.这三种情况是互斥的,写出概率. 【解析】 (Ⅰ)设“甲投球一次命中”为事件A,“乙投球一次命中”为事件B. 由题意得 解得或(舍去), ∴乙投球的命中率为. (Ⅱ)由题设和(Ⅰ)知 故甲投球2次至少命中1次的概率为 (Ⅲ)由题设和(Ⅰ)知, 甲、乙两人各投球2次,共命中2次有三种情况: 甲、乙两人各中一次;甲中两次,乙两次均不中;甲两次均不中,乙中2次. 概率分别为,, 所以甲、乙两人各投两次,共命中2次的概率为.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.
(I)求证:AB1⊥平面A1BD;
(Ⅱ)求二面角A-A1D-B的大小.
查看答案
正四棱柱ABCD-A1B1C1D1中,底面边长为a,侧棱AA1长为ka(k>0),E为侧棱BB1的中点,记以AD1为棱,EAD1,A1AD1为面的二面角大小为θ.
(1)是否存在k值,使直线AE⊥平面A1D1E,若存在,求出k值;若不存在,说明理由;
(2)试比较tanθ与manfen5.com 满分网的大小.

manfen5.com 满分网 查看答案
某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训.已知参加过财会培训的有60%,参加过计算机培训的有75%.假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.
(Ⅰ)任选1名下岗人员,求该人参加过培训的概率;
(Ⅱ)任选3名下岗人员,求这3人中至少有2人参加过培训的概率.
查看答案
四棱锥A-BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,manfen5.com 满分网,AB=AC.
(Ⅰ)证明:AD⊥CE;
(Ⅱ)设CE与平面ABE所成的角为45°,求二面角C-AD-E的大小.

manfen5.com 满分网 查看答案
有4个不同的球,4个不同的盒子,现在要把球全部放入盒内.
(1)共有多少种放法?(用数字作答)
(2)恰有一个盒不放球,有多少种放法?(用数字作答)
(3)恰有两个盒不放球,有多少种方法?(用数字作答)
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.