满分5 > 高中数学试题 >

设数列{an}的前n项和为Sn,且 Sn=n2-4n+4. (1)求数列{an}...

设数列{an}的前n项和为Sn,且 Sn=n2-4n+4.
(1)求数列{an}的通项公式;
(2)设manfen5.com 满分网,数列{bn}的前n项和为Tn,求证:manfen5.com 满分网
(1)根据an=Sn-Sn-1求通项公式,然后验证a1=S1=1,不符合上式,因此数列{an}是分段数列; (2)先写出数列{bn}的通项公式,应用错位相减法,求出Tn. 【解析】 (1)当n=1时,a1=S1=1. 当n≥2时,an=Sn-Sn-1=n2-4n+4-[(n-1)2-4(n-1)+4]=2n-5 ∵a1=1不适合上式, ∴ (2)证明:∵. 当n=1时,, 当n≥2时,,①.② ①-②得:= 得, 此式当n=1时也适合. ∴N*). ∵, ∴Tn<1. 当n≥2时,, ∴Tn<Tn+1(n≥2). ∵, ∴T2<T1. 故Tn≥T2,即. 综上,.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=(x-a)2(x-b)(a,b∈R,a<b).
(I)当a=1,b=2时,求曲线y=f(x)在点(2,f(x))处的切线方程;
(II)设x1,x2是f(x)的两个极值点,x3是f(x)的一个零点,且x3≠x1,x3≠x2
证明:存在实数x4,使得x1,x2,x3,x4按某种顺序排列后的等差数列,并求x4
查看答案
正△ABC的边长为4,CD是AB边上的高,E、F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B
manfen5.com 满分网
(Ⅰ)试判断直线AB与平面DEF的位置关系,并说明理由;
(Ⅱ)求二面角E-DF-C的余弦值;
(Ⅲ)在线段BC上是否存在一点P,使AP⊥DE?证明你的结论.
查看答案
在等比数列{an}中,an>0,(n∈N*),公比q∈(0,1),且a1a5+2a3a5+a2a8=25,a3与a5的等比中项为2.
(1)求数列{an}的通项公式;
(2)设bn=log2an,数列{bn}的前n项和为Sn,当manfen5.com 满分网最大时,求n的值.
查看答案
如图,设A是单位圆和x轴正半轴的交点,P,Q是单位圆上两点,O是坐标原点,且manfen5.com 满分网,∠AOQ=α,α∈[0,π).
(Ⅰ)若点Q的坐标是manfen5.com 满分网,求manfen5.com 满分网的值;
(Ⅱ)设函数manfen5.com 满分网,求f(α)的值域.

manfen5.com 满分网 查看答案
已知f(x)是定义在R上不恒为零的函数,对于任意的x,y∈R,都有f=xf(y)+yf(x)成立. 数列{an}满足an=f(2n)(n∈N*),且a1=2.则数列的通项公式an=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.