(Ⅰ)联立两直线的方程,得到一个关于x与y的二元一次方程组,求出方程组的解即可得到交点P的坐标;
(Ⅱ)根据两直线平行时,斜率相等,由直线l3的斜率设出所求直线的方程为x-2y+m=0,把第一问求出的P的坐标代入即可确定出m的值,进而确定出所求直线的方程;
(Ⅲ)根据两直线垂直时,斜率的乘积为-1,由直线l3的斜率求出所求直线的斜率,设出所求直线的方程,把P的坐标代入即可确定出所求直线的方程.
(本小题满分12分)
【解析】
(Ⅰ)由,解得,
所以点P的坐标是(-2,2); …(4分)
(Ⅱ)因为所求直线与l3平行,
所以设所求直线的方程为 x-2y+m=0.
把点P的坐标代入得-2-2×2+m=0,得m=6.
故所求直线的方程为x-2y+6=0; …(8分)
(Ⅲ)因为所求直线与l3垂直,
所以设所求直线的方程为 2x+y+n=0.
把点P的坐标代入得 2×(-2)+2+n=0,得n=2.
故所求直线的方程为 2x+y+2=0. …(12分)