(Ⅰ)先根据△ABC为正三角形,D为AC中点,得到BD⊥AC,求出△BCD的面积;再根据C1C⊥底面ABC即可求出三棱锥C1-BCD的体积;
(Ⅱ)先根据A1A⊥底面ABC,得到A1A⊥BD,再结合BD⊥AC即可得到BD⊥平面ACC1A1.即可证:平面BC1D⊥平面ACC1A1;
(Ⅲ)连接B1C交BC1于O,连接OD,根据D为AC中点,O为B1C中点可得OD∥AB1,即可证:直线AB1∥平面BC1D.
(本小题满分12分)
【解析】
(Ⅰ)∵△ABC为正三角形,D为AC中点,
∴BD⊥AC,
由AB=6可知,,
∴.
又∵A1A⊥底面ABC,且A1A=AB=6,
∴C1C⊥底面ABC,且C1C=6,
∴. …(4分)
(Ⅱ)∵A1A⊥底面ABC,
∴A1A⊥BD.
又BD⊥AC,
∴BD⊥平面ACC1A1.
又BD⊂平面BC1D,
∴平面BC1D⊥平面ACC1A1. …(8分)
(Ⅲ)连接B1C交BC1于O,连接OD,
在△B1AC中,D为AC中点,O为B1C中点,
所以OD∥AB1,
又OD⊂平面BC1D,
∴直线AB1∥平面BC1D. …(12分)