令a=b=0,得f(0)=f(0•0)=0,可知①正确;
令a=b=1,得f(1)=f(1•1)=2f(1),f(1)=0;又令a=b=-1,得f(1)=-f(-1)-f(-1)=2f(-1),
得f(-1)=0,可知②不正确;
由f(2)=2,则f(2n)=f(2•2n-1)=2f(2n-1)+2n-1f(2)=2f(2n-1)+2n,得bn=bn-1+1,{bn}是等差数列,故④正确;
又b1=1,bn=1+(n-1)×1=n,f(2n)=2nbn=n•2n,则an=2n,数列{an}是等比数列,故③正确.
【解析】
∵f(0)=f(0•0)=0•f(0)+0•f(0)=0,∴①正确;
又f(1)=f(1•1)=2f(1),∴f(1)=0;f(1)=f[(-1)•(-1)]=-2f(-1),∴f(-1)=0,故②错;
又∵f(2)=2,∴f(2n)=f(2•2n-1)=2f(2n-1)+2n-1f(2)=2f(2n-1)+2n,∴bn===+1
即bn=bn-1+1,∴{bn}是等差数列,故④正确;
又b1==1,∴bn=1+(n-1)×1=n,∴f(2n)=2nbn=n•2n,∴an=2n,∴数列{an}是等比数列,故③正确.
故答案为:①③④