满分5 > 高中数学试题 >

已知函数f(x)=x3+bx2+ax+d的图象过点P(0,2),且在点M(-1,...

已知函数f(x)=x3+bx2+ax+d的图象过点P(0,2),且在点M(-1,f(-1))处的切线方程为6x-y+7=0.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)求函数y=f(x)的单调区间.
(Ⅰ)求解析式,只需把a,b,d三个字母求出即可.已知点P(0,2)满足f(x),得到d,又点M(-1,f(-1))处的切线方程为6x-y+7=0,可以得到f(-1)的值,并且得到f(x)在x=-1处的导数为6. (Ⅱ)利用导数研究函数的单调性即可求出函数的单调区间. 【解析】 (Ⅰ)∵f(x)的图象经过P(0,2),∴d=2, ∴f(x)=x3+bx2+ax+2,f'(x)=3x2+2bx+a. ∵点M(-1,f(-1))处的切线方程为6x-y+7=0 ∴f'(x)|x=-1=3x2+2bx+a|x=-1=3-2b+a=6①, 还可以得到,f(-1)=y=1,即点M(-1,1)满足f(x)方程,得到-1+b-a+2=1② 由①、②联立得b=a=-3 故所求的解析式是f(x)=x3-3x2-3x+2. (Ⅱ)f'(x)=3x2-6x-3.,令3x2-6x-3=0,即x2-2x-1=0. 解得.当; 当. 故f(x)的单调增区间为(-∞,1-),(1+,+∞);单调减区间为(1-,1+)
复制答案
考点分析:
相关试题推荐
已知向量manfen5.com 满分网=(x2,x+1),manfen5.com 满分网=(1-x,t),若函数f(x)=manfen5.com 满分网manfen5.com 满分网在区间(-1,1)上是增函数,求t的取值范围.
查看答案
已知椭圆C的两焦点分别为manfen5.com 满分网,长轴长为6,
(1)求椭圆C的标准方程;
(2)已知过点(0,2)且斜率为1的直线交椭圆C于A、B两点,求线段AB的长度..
查看答案
Y已知p:|1-manfen5.com 满分网|≤2,q:x2-2x+1-m2≤0(m>0).若“非p”是“非q”的必要而不充分条件,求实数m的取值范围.
查看答案
已知p:方程x2+mx+1=0有两个不等的负实根,q:方程4x2+4(m-2)x+1=0无实根.若p或q为真,p且q为假.求实数m的取值范围.
查看答案
已知双曲线与椭圆可manfen5.com 满分网共焦点,它们的离心率之和为manfen5.com 满分网,求双曲线方程.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.