由题意,可将不等式变形为(log23)x-(log23)-y-[(log53)x-(log53)-y]≥0,再由两函数的单调性结合四个选项判断出正确答案
【解析】
不等式可以变为(log23)x-(log23)-y-[(log53)x-(log53)-y]≥0,
A选项正确,x+y≥0可得x≥-y,由指数函数的性质知(log23)x-(log23)-y是个正数,而(log53)x-(log53)-y是个负数,由此可以判断出(log23)x-(log23)-y-[(log53)x-(log53)-y]≥0.且B选项不对,
C选项不正确,因为由x+y≤0不能确定出(log23)x-(log23)-y的符号,及(log53)x-(log53)-y符号;
同理得D选项不正确.
综上知A选项正确
故选A.