满分5 > 高中数学试题 >

设直线系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),对于下列四个命题...

设直线系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),对于下列四个命题:
A.M中所有直线均经过一个定点
B.存在定点P不在M中的任一条直线上
C.对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上
D.M中的直线所能围成的正三角形面积都相等
其中真命题的代号是    (写出所有真命题的代号).
验证发现,直线系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π)表示圆x2+(y-2)2=1的切线的集合, A.M中所有直线均经过一个定点,验证直线方程是否能化为为l1+λl2形式, B.存在定点P不在M中的任一条直线上,观察直线的方程即可得到点的坐标. C.对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上,由直线系的几何意义可判断, D.M中的直线所能围成的正三角形面积都相等,由直线系的几何意义可判断 【解析】 验证发现,直线系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π)表示圆x2+(y-2)2=1的切线的集合, A.M中所有直线均经过一个定点,由于本题中的直线不能转化为l1+λl2形式,故不可能过一个定点 B.存在定点P不在M中的任一条直线上,观察知点M(0,2)即符合条件,故B正确; C.对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上,由于圆的所有外切正多边形的边都是圆的切线,故C正确; D.M中的直线所能围成的正三角形面积都相等,由直线系的几何意义知,这些线所围成的正三角形都有一个共同的内切圆x2+(y-2)2=1,所以面积大小一定相等,故本命题正确. 故答案为:BCD
复制答案
考点分析:
相关试题推荐
设双曲线manfen5.com 满分网的右焦点为F(c,0),方程ax2+bx-c=0的两个实根分别为x1和x2,则点P(x1,x2)与圆x2+y2=2的位置关系为    查看答案
过直线l:y=x+9上的一点P作一个长轴最短的椭圆,使其焦点为F1(-3,0),F2(3,0),则椭圆的方程为    查看答案
与圆x2+(y-2)2=1相切,且在两坐标轴上截距相等的直线共有    条. 查看答案
若直线ax+by+1=0(a>0,b>0)始终平分圆x2+y2+2x+2y=0的周长,则manfen5.com 满分网的最小值是:    查看答案
已知x,y∈R,且(log23)x+(log35)y≥(log32)y+(log53)x,则x与y应满足( )
A.x+y≥0
B.x+y>0
C.x+y≤0
D.x+y<0
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.