满分5 > 高中数学试题 >

已知f(x)=2x3-6x2+m(m为常数),在[-2,2]上有最大值3,那么此...

已知f(x)=2x3-6x2+m(m为常数),在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为   
本题是典型的利用函数的导数求最值的问题,只需要利用已知函数的最大值为3,进而求出常熟m的值,即可求出函数的最小值. 【解析】 由已知,f′(x)=6x2-12x,有6x2-12x≥0得x≥2或x≤0, 因此当x∈[2,+∞),(-∞,0]时f(x)为增函数,在x∈[0,2]时f(x)为减函数, 又因为x∈[-2,2], 所以得 当x∈[-2,0]时f(x)为增函数,在x∈[0,2]时f(x)为减函数, 所以f(x)max=f(0)=m=3,故有f(x)=2x3-6x2+3 所以f(-2)=-37,f(2)=-5 因为f(-2)=-37<f(2)=-5,所以函数f(x)的最小值为f(-2)=-37. 答案为:-37
复制答案
考点分析:
相关试题推荐
观察下列不等式:1>manfen5.com 满分网,1+manfen5.com 满分网+manfen5.com 满分网>1,1+manfen5.com 满分网+manfen5.com 满分网+…+manfen5.com 满分网manfen5.com 满分网,1+manfen5.com 满分网+manfen5.com 满分网+…+manfen5.com 满分网>2,1+manfen5.com 满分网+manfen5.com 满分网+…+manfen5.com 满分网manfen5.com 满分网,…,由此猜测第n个不等式为     (n∈N*). 查看答案
已知等差数列{an}中,有manfen5.com 满分网=manfen5.com 满分网成立.类似地,在等比数列{bn}中,有     成立. 查看答案
函数f(x)=x3-3x2,给出下列命题
(1)f(x)是增函数,无极值;     
(2)f(x)是减函数,无极值
(3)f‘(x)的增区间为(-∞,o]及[2,+∞),减区间为[0,2];
(4)f(0)=0 是极大值,f(2)=-4是极小值.
其中正确的命题个数是( )
A.1
B.2
C.3
D.4
查看答案
已知manfen5.com 满分网manfen5.com 满分网为偶函数,则a+b=( )
A.-6
B.-12
C.4
D.-4
查看答案
manfen5.com 满分网则正数的k取值范围( )
A.(0,1)
B.(0,+∞)
C.[1,+∞)
D.manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.