满分5 > 高中数学试题 >

设函数f(x)=ax3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处...

设函数f(x)=ax3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导函数f'(x)的最小值为-12.
(Ⅰ)求a,b,c的值;
(Ⅱ)求函数f(x)的单调递增区间,并求函数f(x)在[-1,3]上的最大值和最小值.
(Ⅰ)先根据奇函数求出c的值,再根据导函数f'(x)的最小值求出b的值,最后依据在x=1处的导数等于切线的斜率求出c的值即可; (Ⅱ)先求导数fˊ(x),在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,求得区间即为单调区间,根据极值与最值的求解方法,将f(x)的各极值与其端点的函数值比较,其中最大的一个就是最大值,最小的一个就是最小值. 【解析】 (Ⅰ)∵f(x)为奇函数, ∴f(-x)=-f(x) 即-ax3-bx+c=-ax3-bx-c ∴c=0 ∵f'(x)=3ax2+b的最小值为-12 ∴b=-12 又直线x-6y-7=0的斜率为 因此,f'(1)=3a+b=-6 ∴a=2,b=-12,c=0. (Ⅱ)f(x)=2x3-12x.,列表如下: 所以函数f(x)的单调增区间是和 ∵f(-1)=10,,f(3)=18 ∴f(x)在[-1,3]上的最大值是f(3)=18,最小值是.
复制答案
考点分析:
相关试题推荐
已知两个数列{Sn}、{Tn}分别:
当n∈N*,Sn=1-manfen5.com 满分网,Tn=manfen5.com 满分网
(1)求S1,S2,T1,T2
(2)猜想Sn与Tn的关系,并用数学归纳法证明.
查看答案
求证:当manfen5.com 满分网
查看答案
若0<a<2,0<b<2,0<c<2,求证:(2-a)b,(2-b)c,(2-c)a不能同时大于1.
查看答案
直线y=kx(k>o)与曲线y=x2围成图形的面积为manfen5.com 满分网,则k的值为    查看答案
已知f(x)=2x3-6x2+m(m为常数),在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.