满分5 > 高中数学试题 >

集合A是由具备下列性质的函数f (x)组成的:①函数f (x)的定义域是[0,+...

集合A是由具备下列性质的函数f (x)组成的:①函数f (x)的定义域是[0,+∞);②函数f(x)的值域是[-2,4);③函数f(x)在[0,+∞)上是增函数.试分别探究下列两小题:
(1)判断函数manfen5.com 满分网,及manfen5.com 满分网是否属于集合A,并简要说明理由;
(2)对于(1)中你认为属于集合A的函数f(x),不等式f(x)+f(x+2)<2f(x+1)是否对于任意的x≥0总成立?若不成立,说明理由?若成立,请证明你的结论.
(1)由已知可得函数的值域[-2,+∞),从而可得f1(x)∉A,对于f2(x),只要分别判断函数定义域是否满足条件①.值域是否满足条件②,单调性是否满足条件③,即可得答案; (2)由(1)知,f2(x)属于集合A.原不等式为,通过整理不等式可判断. 【解析】 (1)∵函数的值域[-2,+∞) ∴f1(x)∉A 对于f2(x),定义域为[0,+∞),满足条件①.而由x≥0知, ∴,满足条件② 又∵, ∴在[0,+∞)上是减函数. ∴f2(x)在[0,+∞)上是增函数,满足条件③ ∴f2(x)属于集合A. (2)由(1)知,f2(x)属于集合A. ∴原不等式为 整理为:. ∵对任意, ∴原不等式对任意x≥0总成立
复制答案
考点分析:
相关试题推荐
知函数f(x)的图象与函数manfen5.com 满分网的图象关于点A(0,1)对称.
(1)求函数f(x)的解析式,并写出定义域、值域.
(2)若g(x)=f(x)+manfen5.com 满分网,且g(x)在区间(0,2]上的值不小于6,求实数a的取值范围.
查看答案
若函数f(x)在定义域(-1,1)内可导,且f′(x)<0;又对任意a、b∈(-1,1)且a+b=0时恒有f(a)+f(b)=0,
(1)判断函数奇偶性
(2)解不等式f(1-m)+f(1-m2)>0.
查看答案
已知f(x)=x3+ax2+bx+c,在x=1与x=-2时,都取得极值.
(1)求a,b的值;
(2)若x∈[-3,2]都有f(x)>manfen5.com 满分网恒成立,求c的取值范围.
查看答案
已知manfen5.com 满分网,C={x|x2-4ax+3a2≤0},若(A∩B)⊆C,求实数a的取值范围.
查看答案
若f(x)=manfen5.com 满分网的反函数f-1(x)满足f-1(x)=f(x),则f(manfen5.com 满分网)的值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.