由题设条件知f(x12)+f(x22)+…+f(x20072)=logax12+logax22+…+logax20072=loga(x1x2…x2007)2,由已知能够求出f(x1x2…x2007)=8,则f(x12)+f(x22)+…+f(x20092)的值可求.
【解析】
f(x12)+f(x22)+…+f(x20072)=logax12+logax22+…+logax20072
=loga(x1x2…x2007)2
=2loga(x1x2…x2007)
=2f(x1x2…x2007)
=2×8=16
故答案为:16.