(1)观察图象满足f′(x)=0的点附近的导数的符号的变化情况,来确定极大值,求出x的值;
(2)根据图象可得f'(1)=0,f'(2)=0,f(1)=5,建立三个方程,联立方程组求解即可.
【解析】
(Ⅰ)由图象可知,在(-∝,1)上f'(x)>0,在(1,2)上f'(x)<0.
在(2,+∝)上f'(x)>0.
故f(x)在(-∝,1),(2,+∝)上递增,在(1,2)上递减.
因此f(x)在x=1处取得极大值,所以x=1.
(Ⅱ)f'(x)=3ax2+2bx+c,
由f'(1)=0,f'(2)=0,f(1)=5,
得
解得a=2,b=-9,c=12.