若定义在区间D上的函数y=f(x)对于区间D上的任意两个值x
1、x
2总有以下不等式
≤f(
)成立,则称函数y=f(x)为区间D上的凸函数.
(1)证明:定义在R上的二次函数f(x)=ax
2+bx+c(a<0)是凸函数;
(2)设f(x)=ax
2+x(a∈R,a≠0),并且x∈[0,1]时,f(x)≤1恒成立,求实数a的取值范围,并判断函数
f(x)=ax
2+x(a∈R,a≠0)能否成为R上的凸函数;
(3)定义在整数集Z上的函数f(x)满足:①对任意的x,y∈Z,f(x+y)=f(x)f(y);②f(0)≠0,f(1)=2.
试求f(x)的解析式;并判断所求的函数f(x)是不是R上的凸函数说明理由.
查看答案