满分5 > 高中数学试题 >

设a∈R,函数f(x)=ex+a•e-x的导函数是f′(x),且f′(x)是奇函...

设a∈R,函数f(x)=ex+a•e-x的导函数是f′(x),且f′(x)是奇函数.若曲线y=f(x)的一条切线的斜率是manfen5.com 满分网,则切点的横坐标为( )
A.ln2
B.-ln2
C.manfen5.com 满分网
D.manfen5.com 满分网
已知切线的斜率,要求切点的横坐标必须先求出切线的方程, 我们可从奇函数入手求出切线的方程. 【解析】 对f(x)=ex+a•e-x求导得 f′(x)=ex-ae-x 又f′(x)是奇函数,故 f′(0)=1-a=0 解得a=1,故有 f′(x)=ex-e-x, 设切点为(x,y),则 , 得或(舍去), 得x=ln2.
复制答案
考点分析:
相关试题推荐
已知函数y=Asin(ωx+φ)+b的一部分图象如图所示,如图A>0,ω>0,|φ|<manfen5.com 满分网,则( )
manfen5.com 满分网
A.φ=manfen5.com 满分网
B.φ=manfen5.com 满分网
C.φ=manfen5.com 满分网
D.φ=manfen5.com 满分网
查看答案
若集合M={x|x2-x≤0},函数f(x)=log2(1-|x|)的定义域为N,则M∩N=( )
A.[0,1)
B.(0,1)
C.[0,1]
D.(-1,0]
查看答案
若复数manfen5.com 满分网(a∈R,i为虚数单位位)是纯虚数,则实数a的值为( )
A.-2
B.4
C.-6
D.6
查看答案
已知函数f(x)=xk+b(常数k,b∈R)的图象过点(4,2)、(16,4)两点.
(1)求f(x)的解析式;
(2)若函数g(x)的图象与函数f(x)的图象关于直线y=x对称,若不等式g(x)+g(x-2)>2ax+2恒成立,求实数a的取值范围;
(3)若P1,P2,P3,…,Pn,…是函数f(x)图象上的点列,Q1,Q2,Q3,…,Qn,…是x正半轴上的点列,O为坐标原点,△OQ1P1,△Q1Q2P2,…,△Qn-1QnPn,…是一系列正三角形,记它们的边长是a1,a2,a3,…,an,…,探求数列an的通项公式,并说明理由.
查看答案
已知函数f(x)=(1+a)|x|(a>-1,a∈R).
(1)若f(x)在(0,+∞)上为增函数,求实数a的取值范围;
(2)当manfen5.com 满分网时,记an=n•f(n),数列{an}的前n项和为Sn,求证:manfen5.com 满分网
(3)当a=2且x∈[m,n],f(x)∈[1,9]时,探求manfen5.com 满分网的取值范围.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.