满分5 > 高中数学试题 >

如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等...

如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=2AD=8,manfen5.com 满分网
(Ⅰ)设M是PC上的一点,证明:平面MBD⊥平面PAD;
(Ⅱ)求四棱锥P-ABCD的体积.

manfen5.com 满分网
(I)欲证平面MBD⊥平面PAD,根据面面垂直的判定定理可知在平面MBD内一直线与平面PAD垂直,而根据平面PAD与平面ABCD垂直的性质定理可知BD⊥平面PAD; (II)过P作PO⊥AD交AD于O,根据平面PAD与平面ABCD垂直的性质定理可知PO⊥平面ABCD,从而PO为四棱锥P-ABCD的高,四边形ABCD是梯形,根据梯形的面积公式求出底面积,最后用锥体的体积公式进行求解即可. 【解析】 (Ⅰ)证明:在△ABD中, 由于AD=4,BD=8,, 所以AD2+BD2=AB2.故AD⊥BD. 又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,BD⊂平面ABCD, 所以BD⊥平面PAD, 又BD⊂平面MBD, 故平面MBD⊥平面PAD. (Ⅱ)【解析】 过P作PO⊥AD交AD于O, 由于平面PAD⊥平面ABCD, 所以PO⊥平面ABCD.因此PO为四棱锥P-ABCD的高, 又△PAD是边长为4的等边三角形.因此. 在底面四边形ABCD中,AB∥DC,AB=2DC, 所以四边形ABCD是梯形,在Rt△ADB中,斜边AB边上的高为, 此即为梯形ABCD的高,所以四边形ABCD的面积为. 故.
复制答案
考点分析:
相关试题推荐
四个森林防火观察站A,B,C,D的坐标依次为(5,0),(-5,0),(0,5),(0,-5),他们都发现某一地区有火讯.若A,B观察到的距离相差为6,且离A近,C,D观察到的距离相差也为6,且离C近.试求火讯点的坐标.
查看答案
在边长分别为6dm和4dm的长方形铁皮的四角切去边长相等的正方形,再把它的边沿虚线折起如图,做成一个无盖的长方形铁皮箱.切去的正方形边长为多少时,铁皮箱的容积最大.

manfen5.com 满分网 查看答案
f(x)是定义在(-∞,0)上的非正可导函数,且满足xf'(x)-f(x)<0,对任意负数a、b,若a<b,则af(a),bf(b)的大小关系为    查看答案
已知函数f(x)=x2(x∈[-2,2]),manfen5.com 满分网,∃x1∈[-2,2],manfen5.com 满分网,使得g(x)=f(x1)成立,则实数a的取值范围是    查看答案
有一个正四棱锥,它的底面边长和侧棱长均为a,现在要用一张正方形的包装纸将它完全包住(不能裁剪纸,但可以折叠)那么包装纸的最小边长应为     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.