满分5 > 高中数学试题 >

某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车...

某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.
(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?
(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
(Ⅰ)严格按照题中月租金的变化对能租出车辆数的影响列式解答即可; (Ⅱ)从月租金与月收益之间的关系列出目标函数,再利用二次函数求最值的知识,要注意函数定义域优先的原则.作为应用题要注意下好结论. 【解析】 (Ⅰ)当每辆车的月租金定为3600元时, 未租出的车辆数为, 所以这时租出了88辆车. (Ⅱ)设每辆车的月租金定为x元, 则租赁公司的月收益为, 整理得. 所以,当x=4050时,f(x)最大,最大值为f(4050)=307050, 即当每辆车的月租金定为4050元时,租赁公司的月收益最大,最大月收益为307050元.
复制答案
考点分析:
相关试题推荐
已知定义域为[0,1]的函数f(x)同时满足以下三个条件:
Ⅰ.对任意的x∈[0,1],总有f(x)≥0;Ⅱ.f(1)=1;Ⅲ.若x1≥0,x2≥0,且x1+x2≤1,则有f(x1+x2)≥f(x1)+f(x2)成立.则称f(x)为“友谊函数”,请解答下列各题:
(1)若已知f(x)为“友谊函数”,求f(0)的值;
(2)函数g(x)=2x-1在区间[0,1]上是否为“友谊函数”?并给出理由.
查看答案
设函数manfen5.com 满分网).
(1)求函数y=f(2x)的定义域;
(2)用函数单调性的定义证明manfen5.com 满分网)在其定义域上为减函数.
查看答案
若关于x的方程x2+2kx+3k=0的两根都大于-1且小于3,求k的取值范围.
查看答案
设集合A={-1,1},B={x|x2-2ax+b=0},若B≠Φ且B⊆A,求a,b的值.
查看答案
对任何实数x,y,函数f(x)满足f(x+y)=f(x)•f(y),且f(1)=2,则manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.